Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 09 Dec 2016 14:16:33 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/09/t14812894257emj540zk762zmo.htm/, Retrieved Fri, 01 Nov 2024 04:37:32 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:37:32 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
11	3	4	3	3
9	4	5	4	3
12	5	4	5	3
12	3	5	5	3
11	4	5	5	3
12	4	5	5	3
12	4	4	4	3
15	4	4	4	4
13	3	4	4	3
12	4	4	4	4
11	4	5	5	3
11	4	5	4	3
12	4	5	4	3
12	4	4	4	4
12	4	4	4	3
14	4	4	5	3
12	4	3	3	3
9	3	4	5	3
13	4	5	4	4
13	2	4	4	3
12	4	5	5	3
12	3	3	4	4
12	4	2	4	4
12	4	5	5	4
12	4	5	5	3
11	3	4	3	3
13	4	4	5	3
13	4	4	4	3
13	4	4	4	3
10	4	3	3	3
13	4	5	5	3
5	3	2	3	3
10	4	2	4	3
15	5	5	4	3
13	4	4	4	4
12	4	5	5	3
13	4	5	4	3
13	5	4	4	3
11	4	5	4	3
12	4	5	5	3
12	4	3	4	3
13	4	2	4	4
14	4	5	4	3
12	4	4	4	3
12	3	5	5	3
10	4	3	4	3
12	4	2	4	5
12	4	5	5	3
13	4	5	4	4
14	5	5	5	5
10	4	4	5	4
12	4	5	5	4
13	4	5	4	4
11	4	5	2	3
12	5	4	5	3
12	5	4	5	3
12	4	4	4	4
9	5	4	4	5
12	4	5	4	3
11	4	2	4	3
12	4	4	4	4
12	3	3	3	3
9	4	4	4	4
13	4	5	4	3
10	4	5	4	3
14	4	3	4	3
10	4	4	4	3
12	4	3	4	3
11	4	4	4	3
14	4	4	4	3
13	4	5	4	3
10	3	2	3	3
12	5	4	4	5
12	3	2	3	3
15	4	4	5	5
12	5	5	5	4
12	5	4	5	3
12	4	3	4	3
12	5	4	5	3
11	4	2	4	4
13	5	5	5	4
13	4	4	4	4
11	4	5	4	3
10	4	4	4	3
9	4	2	3	3
12	4	5	5	3
13	4	5	5	4
10	4	4	4	3
13	5	5	5	3
12	4	4	4	4
12	4	3	4	5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
GWsum[t] = + 6.95966 + 0.196203TVDC2[t] + 0.350888TVDC1[t] + 0.323824TVDC3[t] + 0.394377TVDC4[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
GWsum[t] =  +  6.95966 +  0.196203TVDC2[t] +  0.350888TVDC1[t] +  0.323824TVDC3[t] +  0.394377TVDC4[t]  + e[t] \tabularnewline
Warning: you did not specify the column number of the endogenous series! The first column was selected by default. \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]GWsum[t] =  +  6.95966 +  0.196203TVDC2[t] +  0.350888TVDC1[t] +  0.323824TVDC3[t] +  0.394377TVDC4[t]  + e[t][/C][/ROW]
[ROW][C]Warning: you did not specify the column number of the endogenous series! The first column was selected by default.[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
GWsum[t] = + 6.95966 + 0.196203TVDC2[t] + 0.350888TVDC1[t] + 0.323824TVDC3[t] + 0.394377TVDC4[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.96 1.407+4.9480e+00 3.689e-06 1.844e-06
TVDC2+0.1962 0.2976+6.5940e-01 0.5114 0.2557
TVDC1+0.3509 0.1788+1.9630e+00 0.05292 0.02646
TVDC3+0.3238 0.2746+1.1790e+00 0.2416 0.1208
TVDC4+0.3944 0.2576+1.5310e+00 0.1294 0.0647

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +6.96 &  1.407 & +4.9480e+00 &  3.689e-06 &  1.844e-06 \tabularnewline
TVDC2 & +0.1962 &  0.2976 & +6.5940e-01 &  0.5114 &  0.2557 \tabularnewline
TVDC1 & +0.3509 &  0.1788 & +1.9630e+00 &  0.05292 &  0.02646 \tabularnewline
TVDC3 & +0.3238 &  0.2746 & +1.1790e+00 &  0.2416 &  0.1208 \tabularnewline
TVDC4 & +0.3944 &  0.2576 & +1.5310e+00 &  0.1294 &  0.0647 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+6.96[/C][C] 1.407[/C][C]+4.9480e+00[/C][C] 3.689e-06[/C][C] 1.844e-06[/C][/ROW]
[ROW][C]TVDC2[/C][C]+0.1962[/C][C] 0.2976[/C][C]+6.5940e-01[/C][C] 0.5114[/C][C] 0.2557[/C][/ROW]
[ROW][C]TVDC1[/C][C]+0.3509[/C][C] 0.1788[/C][C]+1.9630e+00[/C][C] 0.05292[/C][C] 0.02646[/C][/ROW]
[ROW][C]TVDC3[/C][C]+0.3238[/C][C] 0.2746[/C][C]+1.1790e+00[/C][C] 0.2416[/C][C] 0.1208[/C][/ROW]
[ROW][C]TVDC4[/C][C]+0.3944[/C][C] 0.2576[/C][C]+1.5310e+00[/C][C] 0.1294[/C][C] 0.0647[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.96 1.407+4.9480e+00 3.689e-06 1.844e-06
TVDC2+0.1962 0.2976+6.5940e-01 0.5114 0.2557
TVDC1+0.3509 0.1788+1.9630e+00 0.05292 0.02646
TVDC3+0.3238 0.2746+1.1790e+00 0.2416 0.1208
TVDC4+0.3944 0.2576+1.5310e+00 0.1294 0.0647







Multiple Linear Regression - Regression Statistics
Multiple R 0.3854
R-squared 0.1485
Adjusted R-squared 0.1089
F-TEST (value) 3.75
F-TEST (DF numerator)4
F-TEST (DF denominator)86
p-value 0.007342
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.425
Sum Squared Residuals 174.7

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.3854 \tabularnewline
R-squared &  0.1485 \tabularnewline
Adjusted R-squared &  0.1089 \tabularnewline
F-TEST (value) &  3.75 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 86 \tabularnewline
p-value &  0.007342 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.425 \tabularnewline
Sum Squared Residuals &  174.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.3854[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.1485[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.1089[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 3.75[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]86[/C][/ROW]
[ROW][C]p-value[/C][C] 0.007342[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.425[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 174.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.3854
R-squared 0.1485
Adjusted R-squared 0.1089
F-TEST (value) 3.75
F-TEST (DF numerator)4
F-TEST (DF denominator)86
p-value 0.007342
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.425
Sum Squared Residuals 174.7







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 11.11-0.1064
2 9 11.98-2.977
3 12 12.15-0.1465
4 12 12.11-0.105
5 11 12.3-1.301
6 12 12.3-0.3012
7 12 11.63 0.3735
8 15 12.02 2.979
9 13 11.43 1.57
10 12 12.02-0.02084
11 11 12.3-1.301
12 11 11.98-0.9773
13 12 11.98 0.02265
14 12 12.02-0.02084
15 12 11.63 0.3735
16 14 11.95 2.05
17 12 10.95 1.048
18 9 11.75-2.754
19 13 12.37 0.6283
20 13 11.23 1.766
21 12 12.3-0.3012
22 12 11.47 0.5263
23 12 11.32 0.6809
24 12 12.7-0.6956
25 12 12.3-0.3012
26 11 11.11-0.1064
27 13 11.95 1.05
28 13 11.63 1.374
29 13 11.63 1.374
30 10 10.95-0.9517
31 13 12.3 0.6988
32 5 10.4-5.405
33 10 10.92-0.9247
34 15 12.17 2.826
35 13 12.02 0.9792
36 12 12.3-0.3012
37 13 11.98 1.023
38 13 11.82 1.177
39 11 11.98-0.9773
40 12 12.3-0.3012
41 12 11.28 0.7244
42 13 11.32 1.681
43 14 11.98 2.023
44 12 11.63 0.3735
45 12 12.11-0.105
46 10 11.28-1.276
47 12 11.71 0.2866
48 12 12.3-0.3012
49 13 12.37 0.6283
50 14 13.29 0.7139
51 10 12.34-2.345
52 12 12.7-0.6956
53 13 12.37 0.6283
54 11 11.33-0.3297
55 12 12.15-0.1465
56 12 12.15-0.1465
57 12 12.02-0.02084
58 9 12.61-3.611
59 12 11.98 0.02265
60 11 10.92 0.07532
61 12 12.02-0.02084
62 12 10.76 1.244
63 9 12.02-3.021
64 13 11.98 1.023
65 10 11.98-1.977
66 14 11.28 2.724
67 10 11.63-1.626
68 12 11.28 0.7244
69 11 11.63-0.6265
70 14 11.63 2.374
71 13 11.98 1.023
72 10 10.4-0.4047
73 12 12.61-0.6114
74 12 10.4 1.595
75 15 12.74 2.261
76 12 12.89-0.8918
77 12 12.15-0.1465
78 12 11.28 0.7244
79 12 12.15-0.1465
80 11 11.32-0.3191
81 13 12.89 0.1082
82 13 12.02 0.9792
83 11 11.98-0.9773
84 10 11.63-1.626
85 9 10.6-1.601
86 12 12.3-0.3012
87 13 12.7 0.3044
88 10 11.63-1.626
89 13 12.5 0.5026
90 12 12.02-0.02084
91 12 12.06-0.06433

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  11 &  11.11 & -0.1064 \tabularnewline
2 &  9 &  11.98 & -2.977 \tabularnewline
3 &  12 &  12.15 & -0.1465 \tabularnewline
4 &  12 &  12.11 & -0.105 \tabularnewline
5 &  11 &  12.3 & -1.301 \tabularnewline
6 &  12 &  12.3 & -0.3012 \tabularnewline
7 &  12 &  11.63 &  0.3735 \tabularnewline
8 &  15 &  12.02 &  2.979 \tabularnewline
9 &  13 &  11.43 &  1.57 \tabularnewline
10 &  12 &  12.02 & -0.02084 \tabularnewline
11 &  11 &  12.3 & -1.301 \tabularnewline
12 &  11 &  11.98 & -0.9773 \tabularnewline
13 &  12 &  11.98 &  0.02265 \tabularnewline
14 &  12 &  12.02 & -0.02084 \tabularnewline
15 &  12 &  11.63 &  0.3735 \tabularnewline
16 &  14 &  11.95 &  2.05 \tabularnewline
17 &  12 &  10.95 &  1.048 \tabularnewline
18 &  9 &  11.75 & -2.754 \tabularnewline
19 &  13 &  12.37 &  0.6283 \tabularnewline
20 &  13 &  11.23 &  1.766 \tabularnewline
21 &  12 &  12.3 & -0.3012 \tabularnewline
22 &  12 &  11.47 &  0.5263 \tabularnewline
23 &  12 &  11.32 &  0.6809 \tabularnewline
24 &  12 &  12.7 & -0.6956 \tabularnewline
25 &  12 &  12.3 & -0.3012 \tabularnewline
26 &  11 &  11.11 & -0.1064 \tabularnewline
27 &  13 &  11.95 &  1.05 \tabularnewline
28 &  13 &  11.63 &  1.374 \tabularnewline
29 &  13 &  11.63 &  1.374 \tabularnewline
30 &  10 &  10.95 & -0.9517 \tabularnewline
31 &  13 &  12.3 &  0.6988 \tabularnewline
32 &  5 &  10.4 & -5.405 \tabularnewline
33 &  10 &  10.92 & -0.9247 \tabularnewline
34 &  15 &  12.17 &  2.826 \tabularnewline
35 &  13 &  12.02 &  0.9792 \tabularnewline
36 &  12 &  12.3 & -0.3012 \tabularnewline
37 &  13 &  11.98 &  1.023 \tabularnewline
38 &  13 &  11.82 &  1.177 \tabularnewline
39 &  11 &  11.98 & -0.9773 \tabularnewline
40 &  12 &  12.3 & -0.3012 \tabularnewline
41 &  12 &  11.28 &  0.7244 \tabularnewline
42 &  13 &  11.32 &  1.681 \tabularnewline
43 &  14 &  11.98 &  2.023 \tabularnewline
44 &  12 &  11.63 &  0.3735 \tabularnewline
45 &  12 &  12.11 & -0.105 \tabularnewline
46 &  10 &  11.28 & -1.276 \tabularnewline
47 &  12 &  11.71 &  0.2866 \tabularnewline
48 &  12 &  12.3 & -0.3012 \tabularnewline
49 &  13 &  12.37 &  0.6283 \tabularnewline
50 &  14 &  13.29 &  0.7139 \tabularnewline
51 &  10 &  12.34 & -2.345 \tabularnewline
52 &  12 &  12.7 & -0.6956 \tabularnewline
53 &  13 &  12.37 &  0.6283 \tabularnewline
54 &  11 &  11.33 & -0.3297 \tabularnewline
55 &  12 &  12.15 & -0.1465 \tabularnewline
56 &  12 &  12.15 & -0.1465 \tabularnewline
57 &  12 &  12.02 & -0.02084 \tabularnewline
58 &  9 &  12.61 & -3.611 \tabularnewline
59 &  12 &  11.98 &  0.02265 \tabularnewline
60 &  11 &  10.92 &  0.07532 \tabularnewline
61 &  12 &  12.02 & -0.02084 \tabularnewline
62 &  12 &  10.76 &  1.244 \tabularnewline
63 &  9 &  12.02 & -3.021 \tabularnewline
64 &  13 &  11.98 &  1.023 \tabularnewline
65 &  10 &  11.98 & -1.977 \tabularnewline
66 &  14 &  11.28 &  2.724 \tabularnewline
67 &  10 &  11.63 & -1.626 \tabularnewline
68 &  12 &  11.28 &  0.7244 \tabularnewline
69 &  11 &  11.63 & -0.6265 \tabularnewline
70 &  14 &  11.63 &  2.374 \tabularnewline
71 &  13 &  11.98 &  1.023 \tabularnewline
72 &  10 &  10.4 & -0.4047 \tabularnewline
73 &  12 &  12.61 & -0.6114 \tabularnewline
74 &  12 &  10.4 &  1.595 \tabularnewline
75 &  15 &  12.74 &  2.261 \tabularnewline
76 &  12 &  12.89 & -0.8918 \tabularnewline
77 &  12 &  12.15 & -0.1465 \tabularnewline
78 &  12 &  11.28 &  0.7244 \tabularnewline
79 &  12 &  12.15 & -0.1465 \tabularnewline
80 &  11 &  11.32 & -0.3191 \tabularnewline
81 &  13 &  12.89 &  0.1082 \tabularnewline
82 &  13 &  12.02 &  0.9792 \tabularnewline
83 &  11 &  11.98 & -0.9773 \tabularnewline
84 &  10 &  11.63 & -1.626 \tabularnewline
85 &  9 &  10.6 & -1.601 \tabularnewline
86 &  12 &  12.3 & -0.3012 \tabularnewline
87 &  13 &  12.7 &  0.3044 \tabularnewline
88 &  10 &  11.63 & -1.626 \tabularnewline
89 &  13 &  12.5 &  0.5026 \tabularnewline
90 &  12 &  12.02 & -0.02084 \tabularnewline
91 &  12 &  12.06 & -0.06433 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 11[/C][C] 11.11[/C][C]-0.1064[/C][/ROW]
[ROW][C]2[/C][C] 9[/C][C] 11.98[/C][C]-2.977[/C][/ROW]
[ROW][C]3[/C][C] 12[/C][C] 12.15[/C][C]-0.1465[/C][/ROW]
[ROW][C]4[/C][C] 12[/C][C] 12.11[/C][C]-0.105[/C][/ROW]
[ROW][C]5[/C][C] 11[/C][C] 12.3[/C][C]-1.301[/C][/ROW]
[ROW][C]6[/C][C] 12[/C][C] 12.3[/C][C]-0.3012[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 11.63[/C][C] 0.3735[/C][/ROW]
[ROW][C]8[/C][C] 15[/C][C] 12.02[/C][C] 2.979[/C][/ROW]
[ROW][C]9[/C][C] 13[/C][C] 11.43[/C][C] 1.57[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 12.02[/C][C]-0.02084[/C][/ROW]
[ROW][C]11[/C][C] 11[/C][C] 12.3[/C][C]-1.301[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 11.98[/C][C]-0.9773[/C][/ROW]
[ROW][C]13[/C][C] 12[/C][C] 11.98[/C][C] 0.02265[/C][/ROW]
[ROW][C]14[/C][C] 12[/C][C] 12.02[/C][C]-0.02084[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 11.63[/C][C] 0.3735[/C][/ROW]
[ROW][C]16[/C][C] 14[/C][C] 11.95[/C][C] 2.05[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 10.95[/C][C] 1.048[/C][/ROW]
[ROW][C]18[/C][C] 9[/C][C] 11.75[/C][C]-2.754[/C][/ROW]
[ROW][C]19[/C][C] 13[/C][C] 12.37[/C][C] 0.6283[/C][/ROW]
[ROW][C]20[/C][C] 13[/C][C] 11.23[/C][C] 1.766[/C][/ROW]
[ROW][C]21[/C][C] 12[/C][C] 12.3[/C][C]-0.3012[/C][/ROW]
[ROW][C]22[/C][C] 12[/C][C] 11.47[/C][C] 0.5263[/C][/ROW]
[ROW][C]23[/C][C] 12[/C][C] 11.32[/C][C] 0.6809[/C][/ROW]
[ROW][C]24[/C][C] 12[/C][C] 12.7[/C][C]-0.6956[/C][/ROW]
[ROW][C]25[/C][C] 12[/C][C] 12.3[/C][C]-0.3012[/C][/ROW]
[ROW][C]26[/C][C] 11[/C][C] 11.11[/C][C]-0.1064[/C][/ROW]
[ROW][C]27[/C][C] 13[/C][C] 11.95[/C][C] 1.05[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 11.63[/C][C] 1.374[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 11.63[/C][C] 1.374[/C][/ROW]
[ROW][C]30[/C][C] 10[/C][C] 10.95[/C][C]-0.9517[/C][/ROW]
[ROW][C]31[/C][C] 13[/C][C] 12.3[/C][C] 0.6988[/C][/ROW]
[ROW][C]32[/C][C] 5[/C][C] 10.4[/C][C]-5.405[/C][/ROW]
[ROW][C]33[/C][C] 10[/C][C] 10.92[/C][C]-0.9247[/C][/ROW]
[ROW][C]34[/C][C] 15[/C][C] 12.17[/C][C] 2.826[/C][/ROW]
[ROW][C]35[/C][C] 13[/C][C] 12.02[/C][C] 0.9792[/C][/ROW]
[ROW][C]36[/C][C] 12[/C][C] 12.3[/C][C]-0.3012[/C][/ROW]
[ROW][C]37[/C][C] 13[/C][C] 11.98[/C][C] 1.023[/C][/ROW]
[ROW][C]38[/C][C] 13[/C][C] 11.82[/C][C] 1.177[/C][/ROW]
[ROW][C]39[/C][C] 11[/C][C] 11.98[/C][C]-0.9773[/C][/ROW]
[ROW][C]40[/C][C] 12[/C][C] 12.3[/C][C]-0.3012[/C][/ROW]
[ROW][C]41[/C][C] 12[/C][C] 11.28[/C][C] 0.7244[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 11.32[/C][C] 1.681[/C][/ROW]
[ROW][C]43[/C][C] 14[/C][C] 11.98[/C][C] 2.023[/C][/ROW]
[ROW][C]44[/C][C] 12[/C][C] 11.63[/C][C] 0.3735[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 12.11[/C][C]-0.105[/C][/ROW]
[ROW][C]46[/C][C] 10[/C][C] 11.28[/C][C]-1.276[/C][/ROW]
[ROW][C]47[/C][C] 12[/C][C] 11.71[/C][C] 0.2866[/C][/ROW]
[ROW][C]48[/C][C] 12[/C][C] 12.3[/C][C]-0.3012[/C][/ROW]
[ROW][C]49[/C][C] 13[/C][C] 12.37[/C][C] 0.6283[/C][/ROW]
[ROW][C]50[/C][C] 14[/C][C] 13.29[/C][C] 0.7139[/C][/ROW]
[ROW][C]51[/C][C] 10[/C][C] 12.34[/C][C]-2.345[/C][/ROW]
[ROW][C]52[/C][C] 12[/C][C] 12.7[/C][C]-0.6956[/C][/ROW]
[ROW][C]53[/C][C] 13[/C][C] 12.37[/C][C] 0.6283[/C][/ROW]
[ROW][C]54[/C][C] 11[/C][C] 11.33[/C][C]-0.3297[/C][/ROW]
[ROW][C]55[/C][C] 12[/C][C] 12.15[/C][C]-0.1465[/C][/ROW]
[ROW][C]56[/C][C] 12[/C][C] 12.15[/C][C]-0.1465[/C][/ROW]
[ROW][C]57[/C][C] 12[/C][C] 12.02[/C][C]-0.02084[/C][/ROW]
[ROW][C]58[/C][C] 9[/C][C] 12.61[/C][C]-3.611[/C][/ROW]
[ROW][C]59[/C][C] 12[/C][C] 11.98[/C][C] 0.02265[/C][/ROW]
[ROW][C]60[/C][C] 11[/C][C] 10.92[/C][C] 0.07532[/C][/ROW]
[ROW][C]61[/C][C] 12[/C][C] 12.02[/C][C]-0.02084[/C][/ROW]
[ROW][C]62[/C][C] 12[/C][C] 10.76[/C][C] 1.244[/C][/ROW]
[ROW][C]63[/C][C] 9[/C][C] 12.02[/C][C]-3.021[/C][/ROW]
[ROW][C]64[/C][C] 13[/C][C] 11.98[/C][C] 1.023[/C][/ROW]
[ROW][C]65[/C][C] 10[/C][C] 11.98[/C][C]-1.977[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 11.28[/C][C] 2.724[/C][/ROW]
[ROW][C]67[/C][C] 10[/C][C] 11.63[/C][C]-1.626[/C][/ROW]
[ROW][C]68[/C][C] 12[/C][C] 11.28[/C][C] 0.7244[/C][/ROW]
[ROW][C]69[/C][C] 11[/C][C] 11.63[/C][C]-0.6265[/C][/ROW]
[ROW][C]70[/C][C] 14[/C][C] 11.63[/C][C] 2.374[/C][/ROW]
[ROW][C]71[/C][C] 13[/C][C] 11.98[/C][C] 1.023[/C][/ROW]
[ROW][C]72[/C][C] 10[/C][C] 10.4[/C][C]-0.4047[/C][/ROW]
[ROW][C]73[/C][C] 12[/C][C] 12.61[/C][C]-0.6114[/C][/ROW]
[ROW][C]74[/C][C] 12[/C][C] 10.4[/C][C] 1.595[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 12.74[/C][C] 2.261[/C][/ROW]
[ROW][C]76[/C][C] 12[/C][C] 12.89[/C][C]-0.8918[/C][/ROW]
[ROW][C]77[/C][C] 12[/C][C] 12.15[/C][C]-0.1465[/C][/ROW]
[ROW][C]78[/C][C] 12[/C][C] 11.28[/C][C] 0.7244[/C][/ROW]
[ROW][C]79[/C][C] 12[/C][C] 12.15[/C][C]-0.1465[/C][/ROW]
[ROW][C]80[/C][C] 11[/C][C] 11.32[/C][C]-0.3191[/C][/ROW]
[ROW][C]81[/C][C] 13[/C][C] 12.89[/C][C] 0.1082[/C][/ROW]
[ROW][C]82[/C][C] 13[/C][C] 12.02[/C][C] 0.9792[/C][/ROW]
[ROW][C]83[/C][C] 11[/C][C] 11.98[/C][C]-0.9773[/C][/ROW]
[ROW][C]84[/C][C] 10[/C][C] 11.63[/C][C]-1.626[/C][/ROW]
[ROW][C]85[/C][C] 9[/C][C] 10.6[/C][C]-1.601[/C][/ROW]
[ROW][C]86[/C][C] 12[/C][C] 12.3[/C][C]-0.3012[/C][/ROW]
[ROW][C]87[/C][C] 13[/C][C] 12.7[/C][C] 0.3044[/C][/ROW]
[ROW][C]88[/C][C] 10[/C][C] 11.63[/C][C]-1.626[/C][/ROW]
[ROW][C]89[/C][C] 13[/C][C] 12.5[/C][C] 0.5026[/C][/ROW]
[ROW][C]90[/C][C] 12[/C][C] 12.02[/C][C]-0.02084[/C][/ROW]
[ROW][C]91[/C][C] 12[/C][C] 12.06[/C][C]-0.06433[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 11.11-0.1064
2 9 11.98-2.977
3 12 12.15-0.1465
4 12 12.11-0.105
5 11 12.3-1.301
6 12 12.3-0.3012
7 12 11.63 0.3735
8 15 12.02 2.979
9 13 11.43 1.57
10 12 12.02-0.02084
11 11 12.3-1.301
12 11 11.98-0.9773
13 12 11.98 0.02265
14 12 12.02-0.02084
15 12 11.63 0.3735
16 14 11.95 2.05
17 12 10.95 1.048
18 9 11.75-2.754
19 13 12.37 0.6283
20 13 11.23 1.766
21 12 12.3-0.3012
22 12 11.47 0.5263
23 12 11.32 0.6809
24 12 12.7-0.6956
25 12 12.3-0.3012
26 11 11.11-0.1064
27 13 11.95 1.05
28 13 11.63 1.374
29 13 11.63 1.374
30 10 10.95-0.9517
31 13 12.3 0.6988
32 5 10.4-5.405
33 10 10.92-0.9247
34 15 12.17 2.826
35 13 12.02 0.9792
36 12 12.3-0.3012
37 13 11.98 1.023
38 13 11.82 1.177
39 11 11.98-0.9773
40 12 12.3-0.3012
41 12 11.28 0.7244
42 13 11.32 1.681
43 14 11.98 2.023
44 12 11.63 0.3735
45 12 12.11-0.105
46 10 11.28-1.276
47 12 11.71 0.2866
48 12 12.3-0.3012
49 13 12.37 0.6283
50 14 13.29 0.7139
51 10 12.34-2.345
52 12 12.7-0.6956
53 13 12.37 0.6283
54 11 11.33-0.3297
55 12 12.15-0.1465
56 12 12.15-0.1465
57 12 12.02-0.02084
58 9 12.61-3.611
59 12 11.98 0.02265
60 11 10.92 0.07532
61 12 12.02-0.02084
62 12 10.76 1.244
63 9 12.02-3.021
64 13 11.98 1.023
65 10 11.98-1.977
66 14 11.28 2.724
67 10 11.63-1.626
68 12 11.28 0.7244
69 11 11.63-0.6265
70 14 11.63 2.374
71 13 11.98 1.023
72 10 10.4-0.4047
73 12 12.61-0.6114
74 12 10.4 1.595
75 15 12.74 2.261
76 12 12.89-0.8918
77 12 12.15-0.1465
78 12 11.28 0.7244
79 12 12.15-0.1465
80 11 11.32-0.3191
81 13 12.89 0.1082
82 13 12.02 0.9792
83 11 11.98-0.9773
84 10 11.63-1.626
85 9 10.6-1.601
86 12 12.3-0.3012
87 13 12.7 0.3044
88 10 11.63-1.626
89 13 12.5 0.5026
90 12 12.02-0.02084
91 12 12.06-0.06433







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.1016 0.2032 0.8984
9 0.03739 0.07478 0.9626
10 0.2762 0.5524 0.7238
11 0.1756 0.3511 0.8244
12 0.195 0.3899 0.805
13 0.2655 0.5311 0.7345
14 0.2488 0.4975 0.7512
15 0.173 0.3461 0.827
16 0.1572 0.3144 0.8428
17 0.1112 0.2225 0.8888
18 0.5715 0.8571 0.4285
19 0.5012 0.9976 0.4988
20 0.504 0.992 0.496
21 0.4364 0.8728 0.5636
22 0.4336 0.8672 0.5664
23 0.408 0.8161 0.592
24 0.3462 0.6923 0.6538
25 0.2855 0.571 0.7145
26 0.233 0.4661 0.767
27 0.211 0.4219 0.789
28 0.2018 0.4036 0.7982
29 0.1894 0.3789 0.8106
30 0.2081 0.4163 0.7919
31 0.1842 0.3684 0.8158
32 0.9153 0.1695 0.08475
33 0.8955 0.209 0.1045
34 0.9523 0.09535 0.04768
35 0.9393 0.1214 0.06069
36 0.9191 0.1617 0.08087
37 0.9045 0.1911 0.09553
38 0.8981 0.2037 0.1019
39 0.885 0.23 0.115
40 0.8541 0.2918 0.1459
41 0.8279 0.3442 0.1721
42 0.8304 0.3392 0.1696
43 0.8666 0.2667 0.1334
44 0.8326 0.3348 0.1674
45 0.802 0.3959 0.198
46 0.7914 0.4172 0.2086
47 0.7526 0.4948 0.2474
48 0.7083 0.5834 0.2917
49 0.6658 0.6684 0.3342
50 0.6632 0.6737 0.3368
51 0.8033 0.3935 0.1967
52 0.7892 0.4216 0.2108
53 0.7525 0.495 0.2475
54 0.792 0.4161 0.208
55 0.7433 0.5134 0.2567
56 0.6887 0.6227 0.3113
57 0.6308 0.7385 0.3692
58 0.8108 0.3783 0.1892
59 0.7651 0.4697 0.2349
60 0.7155 0.569 0.2845
61 0.6543 0.6914 0.3457
62 0.6391 0.7219 0.3609
63 0.8329 0.3341 0.1671
64 0.8391 0.3219 0.1609
65 0.8536 0.2929 0.1464
66 0.9461 0.1078 0.05389
67 0.9535 0.09305 0.04653
68 0.9383 0.1234 0.06171
69 0.9147 0.1707 0.08534
70 0.9785 0.04297 0.02148
71 0.9875 0.02509 0.01254
72 0.9791 0.04176 0.02088
73 0.9651 0.06974 0.03487
74 0.9876 0.0247 0.01235
75 0.9882 0.02354 0.01177
76 0.9885 0.02296 0.01148
77 0.9765 0.04697 0.02349
78 0.9927 0.01463 0.007313
79 0.982 0.03609 0.01804
80 0.9601 0.07981 0.0399
81 0.9531 0.09377 0.04689
82 0.9833 0.03331 0.01666
83 0.9447 0.1106 0.05528

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.1016 &  0.2032 &  0.8984 \tabularnewline
9 &  0.03739 &  0.07478 &  0.9626 \tabularnewline
10 &  0.2762 &  0.5524 &  0.7238 \tabularnewline
11 &  0.1756 &  0.3511 &  0.8244 \tabularnewline
12 &  0.195 &  0.3899 &  0.805 \tabularnewline
13 &  0.2655 &  0.5311 &  0.7345 \tabularnewline
14 &  0.2488 &  0.4975 &  0.7512 \tabularnewline
15 &  0.173 &  0.3461 &  0.827 \tabularnewline
16 &  0.1572 &  0.3144 &  0.8428 \tabularnewline
17 &  0.1112 &  0.2225 &  0.8888 \tabularnewline
18 &  0.5715 &  0.8571 &  0.4285 \tabularnewline
19 &  0.5012 &  0.9976 &  0.4988 \tabularnewline
20 &  0.504 &  0.992 &  0.496 \tabularnewline
21 &  0.4364 &  0.8728 &  0.5636 \tabularnewline
22 &  0.4336 &  0.8672 &  0.5664 \tabularnewline
23 &  0.408 &  0.8161 &  0.592 \tabularnewline
24 &  0.3462 &  0.6923 &  0.6538 \tabularnewline
25 &  0.2855 &  0.571 &  0.7145 \tabularnewline
26 &  0.233 &  0.4661 &  0.767 \tabularnewline
27 &  0.211 &  0.4219 &  0.789 \tabularnewline
28 &  0.2018 &  0.4036 &  0.7982 \tabularnewline
29 &  0.1894 &  0.3789 &  0.8106 \tabularnewline
30 &  0.2081 &  0.4163 &  0.7919 \tabularnewline
31 &  0.1842 &  0.3684 &  0.8158 \tabularnewline
32 &  0.9153 &  0.1695 &  0.08475 \tabularnewline
33 &  0.8955 &  0.209 &  0.1045 \tabularnewline
34 &  0.9523 &  0.09535 &  0.04768 \tabularnewline
35 &  0.9393 &  0.1214 &  0.06069 \tabularnewline
36 &  0.9191 &  0.1617 &  0.08087 \tabularnewline
37 &  0.9045 &  0.1911 &  0.09553 \tabularnewline
38 &  0.8981 &  0.2037 &  0.1019 \tabularnewline
39 &  0.885 &  0.23 &  0.115 \tabularnewline
40 &  0.8541 &  0.2918 &  0.1459 \tabularnewline
41 &  0.8279 &  0.3442 &  0.1721 \tabularnewline
42 &  0.8304 &  0.3392 &  0.1696 \tabularnewline
43 &  0.8666 &  0.2667 &  0.1334 \tabularnewline
44 &  0.8326 &  0.3348 &  0.1674 \tabularnewline
45 &  0.802 &  0.3959 &  0.198 \tabularnewline
46 &  0.7914 &  0.4172 &  0.2086 \tabularnewline
47 &  0.7526 &  0.4948 &  0.2474 \tabularnewline
48 &  0.7083 &  0.5834 &  0.2917 \tabularnewline
49 &  0.6658 &  0.6684 &  0.3342 \tabularnewline
50 &  0.6632 &  0.6737 &  0.3368 \tabularnewline
51 &  0.8033 &  0.3935 &  0.1967 \tabularnewline
52 &  0.7892 &  0.4216 &  0.2108 \tabularnewline
53 &  0.7525 &  0.495 &  0.2475 \tabularnewline
54 &  0.792 &  0.4161 &  0.208 \tabularnewline
55 &  0.7433 &  0.5134 &  0.2567 \tabularnewline
56 &  0.6887 &  0.6227 &  0.3113 \tabularnewline
57 &  0.6308 &  0.7385 &  0.3692 \tabularnewline
58 &  0.8108 &  0.3783 &  0.1892 \tabularnewline
59 &  0.7651 &  0.4697 &  0.2349 \tabularnewline
60 &  0.7155 &  0.569 &  0.2845 \tabularnewline
61 &  0.6543 &  0.6914 &  0.3457 \tabularnewline
62 &  0.6391 &  0.7219 &  0.3609 \tabularnewline
63 &  0.8329 &  0.3341 &  0.1671 \tabularnewline
64 &  0.8391 &  0.3219 &  0.1609 \tabularnewline
65 &  0.8536 &  0.2929 &  0.1464 \tabularnewline
66 &  0.9461 &  0.1078 &  0.05389 \tabularnewline
67 &  0.9535 &  0.09305 &  0.04653 \tabularnewline
68 &  0.9383 &  0.1234 &  0.06171 \tabularnewline
69 &  0.9147 &  0.1707 &  0.08534 \tabularnewline
70 &  0.9785 &  0.04297 &  0.02148 \tabularnewline
71 &  0.9875 &  0.02509 &  0.01254 \tabularnewline
72 &  0.9791 &  0.04176 &  0.02088 \tabularnewline
73 &  0.9651 &  0.06974 &  0.03487 \tabularnewline
74 &  0.9876 &  0.0247 &  0.01235 \tabularnewline
75 &  0.9882 &  0.02354 &  0.01177 \tabularnewline
76 &  0.9885 &  0.02296 &  0.01148 \tabularnewline
77 &  0.9765 &  0.04697 &  0.02349 \tabularnewline
78 &  0.9927 &  0.01463 &  0.007313 \tabularnewline
79 &  0.982 &  0.03609 &  0.01804 \tabularnewline
80 &  0.9601 &  0.07981 &  0.0399 \tabularnewline
81 &  0.9531 &  0.09377 &  0.04689 \tabularnewline
82 &  0.9833 &  0.03331 &  0.01666 \tabularnewline
83 &  0.9447 &  0.1106 &  0.05528 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.1016[/C][C] 0.2032[/C][C] 0.8984[/C][/ROW]
[ROW][C]9[/C][C] 0.03739[/C][C] 0.07478[/C][C] 0.9626[/C][/ROW]
[ROW][C]10[/C][C] 0.2762[/C][C] 0.5524[/C][C] 0.7238[/C][/ROW]
[ROW][C]11[/C][C] 0.1756[/C][C] 0.3511[/C][C] 0.8244[/C][/ROW]
[ROW][C]12[/C][C] 0.195[/C][C] 0.3899[/C][C] 0.805[/C][/ROW]
[ROW][C]13[/C][C] 0.2655[/C][C] 0.5311[/C][C] 0.7345[/C][/ROW]
[ROW][C]14[/C][C] 0.2488[/C][C] 0.4975[/C][C] 0.7512[/C][/ROW]
[ROW][C]15[/C][C] 0.173[/C][C] 0.3461[/C][C] 0.827[/C][/ROW]
[ROW][C]16[/C][C] 0.1572[/C][C] 0.3144[/C][C] 0.8428[/C][/ROW]
[ROW][C]17[/C][C] 0.1112[/C][C] 0.2225[/C][C] 0.8888[/C][/ROW]
[ROW][C]18[/C][C] 0.5715[/C][C] 0.8571[/C][C] 0.4285[/C][/ROW]
[ROW][C]19[/C][C] 0.5012[/C][C] 0.9976[/C][C] 0.4988[/C][/ROW]
[ROW][C]20[/C][C] 0.504[/C][C] 0.992[/C][C] 0.496[/C][/ROW]
[ROW][C]21[/C][C] 0.4364[/C][C] 0.8728[/C][C] 0.5636[/C][/ROW]
[ROW][C]22[/C][C] 0.4336[/C][C] 0.8672[/C][C] 0.5664[/C][/ROW]
[ROW][C]23[/C][C] 0.408[/C][C] 0.8161[/C][C] 0.592[/C][/ROW]
[ROW][C]24[/C][C] 0.3462[/C][C] 0.6923[/C][C] 0.6538[/C][/ROW]
[ROW][C]25[/C][C] 0.2855[/C][C] 0.571[/C][C] 0.7145[/C][/ROW]
[ROW][C]26[/C][C] 0.233[/C][C] 0.4661[/C][C] 0.767[/C][/ROW]
[ROW][C]27[/C][C] 0.211[/C][C] 0.4219[/C][C] 0.789[/C][/ROW]
[ROW][C]28[/C][C] 0.2018[/C][C] 0.4036[/C][C] 0.7982[/C][/ROW]
[ROW][C]29[/C][C] 0.1894[/C][C] 0.3789[/C][C] 0.8106[/C][/ROW]
[ROW][C]30[/C][C] 0.2081[/C][C] 0.4163[/C][C] 0.7919[/C][/ROW]
[ROW][C]31[/C][C] 0.1842[/C][C] 0.3684[/C][C] 0.8158[/C][/ROW]
[ROW][C]32[/C][C] 0.9153[/C][C] 0.1695[/C][C] 0.08475[/C][/ROW]
[ROW][C]33[/C][C] 0.8955[/C][C] 0.209[/C][C] 0.1045[/C][/ROW]
[ROW][C]34[/C][C] 0.9523[/C][C] 0.09535[/C][C] 0.04768[/C][/ROW]
[ROW][C]35[/C][C] 0.9393[/C][C] 0.1214[/C][C] 0.06069[/C][/ROW]
[ROW][C]36[/C][C] 0.9191[/C][C] 0.1617[/C][C] 0.08087[/C][/ROW]
[ROW][C]37[/C][C] 0.9045[/C][C] 0.1911[/C][C] 0.09553[/C][/ROW]
[ROW][C]38[/C][C] 0.8981[/C][C] 0.2037[/C][C] 0.1019[/C][/ROW]
[ROW][C]39[/C][C] 0.885[/C][C] 0.23[/C][C] 0.115[/C][/ROW]
[ROW][C]40[/C][C] 0.8541[/C][C] 0.2918[/C][C] 0.1459[/C][/ROW]
[ROW][C]41[/C][C] 0.8279[/C][C] 0.3442[/C][C] 0.1721[/C][/ROW]
[ROW][C]42[/C][C] 0.8304[/C][C] 0.3392[/C][C] 0.1696[/C][/ROW]
[ROW][C]43[/C][C] 0.8666[/C][C] 0.2667[/C][C] 0.1334[/C][/ROW]
[ROW][C]44[/C][C] 0.8326[/C][C] 0.3348[/C][C] 0.1674[/C][/ROW]
[ROW][C]45[/C][C] 0.802[/C][C] 0.3959[/C][C] 0.198[/C][/ROW]
[ROW][C]46[/C][C] 0.7914[/C][C] 0.4172[/C][C] 0.2086[/C][/ROW]
[ROW][C]47[/C][C] 0.7526[/C][C] 0.4948[/C][C] 0.2474[/C][/ROW]
[ROW][C]48[/C][C] 0.7083[/C][C] 0.5834[/C][C] 0.2917[/C][/ROW]
[ROW][C]49[/C][C] 0.6658[/C][C] 0.6684[/C][C] 0.3342[/C][/ROW]
[ROW][C]50[/C][C] 0.6632[/C][C] 0.6737[/C][C] 0.3368[/C][/ROW]
[ROW][C]51[/C][C] 0.8033[/C][C] 0.3935[/C][C] 0.1967[/C][/ROW]
[ROW][C]52[/C][C] 0.7892[/C][C] 0.4216[/C][C] 0.2108[/C][/ROW]
[ROW][C]53[/C][C] 0.7525[/C][C] 0.495[/C][C] 0.2475[/C][/ROW]
[ROW][C]54[/C][C] 0.792[/C][C] 0.4161[/C][C] 0.208[/C][/ROW]
[ROW][C]55[/C][C] 0.7433[/C][C] 0.5134[/C][C] 0.2567[/C][/ROW]
[ROW][C]56[/C][C] 0.6887[/C][C] 0.6227[/C][C] 0.3113[/C][/ROW]
[ROW][C]57[/C][C] 0.6308[/C][C] 0.7385[/C][C] 0.3692[/C][/ROW]
[ROW][C]58[/C][C] 0.8108[/C][C] 0.3783[/C][C] 0.1892[/C][/ROW]
[ROW][C]59[/C][C] 0.7651[/C][C] 0.4697[/C][C] 0.2349[/C][/ROW]
[ROW][C]60[/C][C] 0.7155[/C][C] 0.569[/C][C] 0.2845[/C][/ROW]
[ROW][C]61[/C][C] 0.6543[/C][C] 0.6914[/C][C] 0.3457[/C][/ROW]
[ROW][C]62[/C][C] 0.6391[/C][C] 0.7219[/C][C] 0.3609[/C][/ROW]
[ROW][C]63[/C][C] 0.8329[/C][C] 0.3341[/C][C] 0.1671[/C][/ROW]
[ROW][C]64[/C][C] 0.8391[/C][C] 0.3219[/C][C] 0.1609[/C][/ROW]
[ROW][C]65[/C][C] 0.8536[/C][C] 0.2929[/C][C] 0.1464[/C][/ROW]
[ROW][C]66[/C][C] 0.9461[/C][C] 0.1078[/C][C] 0.05389[/C][/ROW]
[ROW][C]67[/C][C] 0.9535[/C][C] 0.09305[/C][C] 0.04653[/C][/ROW]
[ROW][C]68[/C][C] 0.9383[/C][C] 0.1234[/C][C] 0.06171[/C][/ROW]
[ROW][C]69[/C][C] 0.9147[/C][C] 0.1707[/C][C] 0.08534[/C][/ROW]
[ROW][C]70[/C][C] 0.9785[/C][C] 0.04297[/C][C] 0.02148[/C][/ROW]
[ROW][C]71[/C][C] 0.9875[/C][C] 0.02509[/C][C] 0.01254[/C][/ROW]
[ROW][C]72[/C][C] 0.9791[/C][C] 0.04176[/C][C] 0.02088[/C][/ROW]
[ROW][C]73[/C][C] 0.9651[/C][C] 0.06974[/C][C] 0.03487[/C][/ROW]
[ROW][C]74[/C][C] 0.9876[/C][C] 0.0247[/C][C] 0.01235[/C][/ROW]
[ROW][C]75[/C][C] 0.9882[/C][C] 0.02354[/C][C] 0.01177[/C][/ROW]
[ROW][C]76[/C][C] 0.9885[/C][C] 0.02296[/C][C] 0.01148[/C][/ROW]
[ROW][C]77[/C][C] 0.9765[/C][C] 0.04697[/C][C] 0.02349[/C][/ROW]
[ROW][C]78[/C][C] 0.9927[/C][C] 0.01463[/C][C] 0.007313[/C][/ROW]
[ROW][C]79[/C][C] 0.982[/C][C] 0.03609[/C][C] 0.01804[/C][/ROW]
[ROW][C]80[/C][C] 0.9601[/C][C] 0.07981[/C][C] 0.0399[/C][/ROW]
[ROW][C]81[/C][C] 0.9531[/C][C] 0.09377[/C][C] 0.04689[/C][/ROW]
[ROW][C]82[/C][C] 0.9833[/C][C] 0.03331[/C][C] 0.01666[/C][/ROW]
[ROW][C]83[/C][C] 0.9447[/C][C] 0.1106[/C][C] 0.05528[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.1016 0.2032 0.8984
9 0.03739 0.07478 0.9626
10 0.2762 0.5524 0.7238
11 0.1756 0.3511 0.8244
12 0.195 0.3899 0.805
13 0.2655 0.5311 0.7345
14 0.2488 0.4975 0.7512
15 0.173 0.3461 0.827
16 0.1572 0.3144 0.8428
17 0.1112 0.2225 0.8888
18 0.5715 0.8571 0.4285
19 0.5012 0.9976 0.4988
20 0.504 0.992 0.496
21 0.4364 0.8728 0.5636
22 0.4336 0.8672 0.5664
23 0.408 0.8161 0.592
24 0.3462 0.6923 0.6538
25 0.2855 0.571 0.7145
26 0.233 0.4661 0.767
27 0.211 0.4219 0.789
28 0.2018 0.4036 0.7982
29 0.1894 0.3789 0.8106
30 0.2081 0.4163 0.7919
31 0.1842 0.3684 0.8158
32 0.9153 0.1695 0.08475
33 0.8955 0.209 0.1045
34 0.9523 0.09535 0.04768
35 0.9393 0.1214 0.06069
36 0.9191 0.1617 0.08087
37 0.9045 0.1911 0.09553
38 0.8981 0.2037 0.1019
39 0.885 0.23 0.115
40 0.8541 0.2918 0.1459
41 0.8279 0.3442 0.1721
42 0.8304 0.3392 0.1696
43 0.8666 0.2667 0.1334
44 0.8326 0.3348 0.1674
45 0.802 0.3959 0.198
46 0.7914 0.4172 0.2086
47 0.7526 0.4948 0.2474
48 0.7083 0.5834 0.2917
49 0.6658 0.6684 0.3342
50 0.6632 0.6737 0.3368
51 0.8033 0.3935 0.1967
52 0.7892 0.4216 0.2108
53 0.7525 0.495 0.2475
54 0.792 0.4161 0.208
55 0.7433 0.5134 0.2567
56 0.6887 0.6227 0.3113
57 0.6308 0.7385 0.3692
58 0.8108 0.3783 0.1892
59 0.7651 0.4697 0.2349
60 0.7155 0.569 0.2845
61 0.6543 0.6914 0.3457
62 0.6391 0.7219 0.3609
63 0.8329 0.3341 0.1671
64 0.8391 0.3219 0.1609
65 0.8536 0.2929 0.1464
66 0.9461 0.1078 0.05389
67 0.9535 0.09305 0.04653
68 0.9383 0.1234 0.06171
69 0.9147 0.1707 0.08534
70 0.9785 0.04297 0.02148
71 0.9875 0.02509 0.01254
72 0.9791 0.04176 0.02088
73 0.9651 0.06974 0.03487
74 0.9876 0.0247 0.01235
75 0.9882 0.02354 0.01177
76 0.9885 0.02296 0.01148
77 0.9765 0.04697 0.02349
78 0.9927 0.01463 0.007313
79 0.982 0.03609 0.01804
80 0.9601 0.07981 0.0399
81 0.9531 0.09377 0.04689
82 0.9833 0.03331 0.01666
83 0.9447 0.1106 0.05528







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level100.131579NOK
10% type I error level160.210526NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 10 & 0.131579 & NOK \tabularnewline
10% type I error level & 16 & 0.210526 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]10[/C][C]0.131579[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]16[/C][C]0.210526[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level100.131579NOK
10% type I error level160.210526NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.414, df1 = 2, df2 = 84, p-value = 0.03754
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.81673, df1 = 8, df2 = 78, p-value = 0.5901
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.8081, df1 = 2, df2 = 84, p-value = 0.06599

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.414, df1 = 2, df2 = 84, p-value = 0.03754
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.81673, df1 = 8, df2 = 78, p-value = 0.5901
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.8081, df1 = 2, df2 = 84, p-value = 0.06599
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.414, df1 = 2, df2 = 84, p-value = 0.03754
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.81673, df1 = 8, df2 = 78, p-value = 0.5901
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.8081, df1 = 2, df2 = 84, p-value = 0.06599
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.414, df1 = 2, df2 = 84, p-value = 0.03754
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.81673, df1 = 8, df2 = 78, p-value = 0.5901
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.8081, df1 = 2, df2 = 84, p-value = 0.06599







Variance Inflation Factors (Multicollinearity)
> vif
   TVDC2    TVDC1    TVDC3    TVDC4 
1.220638 1.333345 1.427455 1.087605 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   TVDC2    TVDC1    TVDC3    TVDC4 
1.220638 1.333345 1.427455 1.087605 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   TVDC2    TVDC1    TVDC3    TVDC4 
1.220638 1.333345 1.427455 1.087605 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   TVDC2    TVDC1    TVDC3    TVDC4 
1.220638 1.333345 1.427455 1.087605 



Parameters (Session):
par2 = greygreygreygreygreyDo not include Seasonal Dummies ; par3 = FALSEFALSEFALSEFALSEFALSENo Linear Trend ; par4 = UnknownUnknownUnknownUnknownUnknown ;
Parameters (R input):
par1 = ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')