Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationThu, 08 Dec 2016 20:52:18 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/08/t1481226780ny4gfgfe02hr2k7.htm/, Retrieved Fri, 01 Nov 2024 03:39:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298382, Retrieved Fri, 01 Nov 2024 03:39:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact95
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [autocorrelatie] [2016-12-08 19:52:18] [d900f94b3f64e304b47af1531cb36401] [Current]
Feedback Forum

Post a new message
Dataseries X:
4956
5014.8
5053
5092.2
5126
5160
5188.8
5219.4
5255.6
5297
5349.8
5392.4
5429.8
5483.2
5540
5594.4
5650.2
5694
5741.8
5773.6
5816.8
5869.2
5927
5989.2
6038.8
6080.6
6111
6122.6
6154.4
6207
6231.2
6268.4
6309
6342.6
6376
6423.2
6465.2
6499.8
6552.2
6613.6
6658.6
6699.4
6763.4
6814.8
6869.4
6907.6
6936
6994.6
7043.2
7056.2
7068
7106.6
7141.2
7168.2
7184.6
7229.2
7273.4
7320.6
7350
7362.6
7411.2
7465.4
7510.2
7558.8
7605.4
7642.8
7681.6
7705
7729.8
7768.8
7810.4
7840.8
7855.4
7863.6
7904.4
7922.8
7929.4
7968
8018.6
8032.8
8052.6
8075.8
8106.4
8134.6
8140.6
8140
8152.2
8167.2
8166.6
8185
8203.8
8233.6
8251.6
8252.2
8235.6
8251.4
8293.8
8329.8
8342.4
8351.4
8347.8
8349.4
8337
8326
8313
8327.4
8346.4
8360.8
8374.6
8406
8406.2
8381.4
8379.8
8367.4
8372
8393.4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298382&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298382&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298382&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.9768510.5210
20.95386210.27340
30.93063710.02330
40.907039.7690
50.8830569.51080
60.8585189.24650
70.8335768.97790
80.8085528.70840
90.7833488.43690
100.7580418.16440
110.7328977.89350
120.7077577.62280
130.682287.34840
140.6567067.07290
150.6311026.79720
160.6055896.52240
170.5801486.24840
180.5546955.97420
190.5293135.70090
200.503985.4280

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.97685 & 10.521 & 0 \tabularnewline
2 & 0.953862 & 10.2734 & 0 \tabularnewline
3 & 0.930637 & 10.0233 & 0 \tabularnewline
4 & 0.90703 & 9.769 & 0 \tabularnewline
5 & 0.883056 & 9.5108 & 0 \tabularnewline
6 & 0.858518 & 9.2465 & 0 \tabularnewline
7 & 0.833576 & 8.9779 & 0 \tabularnewline
8 & 0.808552 & 8.7084 & 0 \tabularnewline
9 & 0.783348 & 8.4369 & 0 \tabularnewline
10 & 0.758041 & 8.1644 & 0 \tabularnewline
11 & 0.732897 & 7.8935 & 0 \tabularnewline
12 & 0.707757 & 7.6228 & 0 \tabularnewline
13 & 0.68228 & 7.3484 & 0 \tabularnewline
14 & 0.656706 & 7.0729 & 0 \tabularnewline
15 & 0.631102 & 6.7972 & 0 \tabularnewline
16 & 0.605589 & 6.5224 & 0 \tabularnewline
17 & 0.580148 & 6.2484 & 0 \tabularnewline
18 & 0.554695 & 5.9742 & 0 \tabularnewline
19 & 0.529313 & 5.7009 & 0 \tabularnewline
20 & 0.50398 & 5.428 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298382&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.97685[/C][C]10.521[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.953862[/C][C]10.2734[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.930637[/C][C]10.0233[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.90703[/C][C]9.769[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.883056[/C][C]9.5108[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.858518[/C][C]9.2465[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.833576[/C][C]8.9779[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.808552[/C][C]8.7084[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.783348[/C][C]8.4369[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.758041[/C][C]8.1644[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.732897[/C][C]7.8935[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.707757[/C][C]7.6228[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.68228[/C][C]7.3484[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.656706[/C][C]7.0729[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.631102[/C][C]6.7972[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.605589[/C][C]6.5224[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.580148[/C][C]6.2484[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.554695[/C][C]5.9742[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.529313[/C][C]5.7009[/C][C]0[/C][/ROW]
[ROW][C]20[/C][C]0.50398[/C][C]5.428[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298382&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298382&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.9768510.5210
20.95386210.27340
30.93063710.02330
40.907039.7690
50.8830569.51080
60.8585189.24650
70.8335768.97790
80.8085528.70840
90.7833488.43690
100.7580418.16440
110.7328977.89350
120.7077577.62280
130.682287.34840
140.6567067.07290
150.6311026.79720
160.6055896.52240
170.5801486.24840
180.5546955.97420
190.5293135.70090
200.503985.4280







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.9768510.5210
2-0.008197-0.08830.464903
3-0.016918-0.18220.427867
4-0.020399-0.21970.413246
5-0.020462-0.22040.412982
6-0.025041-0.26970.393937
7-0.022025-0.23720.406452
8-0.01522-0.16390.435039
9-0.017489-0.18840.425462
10-0.016099-0.17340.431323
11-0.010521-0.11330.454987
12-0.01409-0.15180.439821
13-0.021942-0.23630.406799
14-0.017245-0.18570.42649
15-0.016035-0.17270.431593
16-0.013614-0.14660.441839
17-0.014229-0.15320.439234
18-0.016163-0.17410.431053
19-0.0147-0.15830.437238
20-0.015496-0.16690.433869

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.97685 & 10.521 & 0 \tabularnewline
2 & -0.008197 & -0.0883 & 0.464903 \tabularnewline
3 & -0.016918 & -0.1822 & 0.427867 \tabularnewline
4 & -0.020399 & -0.2197 & 0.413246 \tabularnewline
5 & -0.020462 & -0.2204 & 0.412982 \tabularnewline
6 & -0.025041 & -0.2697 & 0.393937 \tabularnewline
7 & -0.022025 & -0.2372 & 0.406452 \tabularnewline
8 & -0.01522 & -0.1639 & 0.435039 \tabularnewline
9 & -0.017489 & -0.1884 & 0.425462 \tabularnewline
10 & -0.016099 & -0.1734 & 0.431323 \tabularnewline
11 & -0.010521 & -0.1133 & 0.454987 \tabularnewline
12 & -0.01409 & -0.1518 & 0.439821 \tabularnewline
13 & -0.021942 & -0.2363 & 0.406799 \tabularnewline
14 & -0.017245 & -0.1857 & 0.42649 \tabularnewline
15 & -0.016035 & -0.1727 & 0.431593 \tabularnewline
16 & -0.013614 & -0.1466 & 0.441839 \tabularnewline
17 & -0.014229 & -0.1532 & 0.439234 \tabularnewline
18 & -0.016163 & -0.1741 & 0.431053 \tabularnewline
19 & -0.0147 & -0.1583 & 0.437238 \tabularnewline
20 & -0.015496 & -0.1669 & 0.433869 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298382&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.97685[/C][C]10.521[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.008197[/C][C]-0.0883[/C][C]0.464903[/C][/ROW]
[ROW][C]3[/C][C]-0.016918[/C][C]-0.1822[/C][C]0.427867[/C][/ROW]
[ROW][C]4[/C][C]-0.020399[/C][C]-0.2197[/C][C]0.413246[/C][/ROW]
[ROW][C]5[/C][C]-0.020462[/C][C]-0.2204[/C][C]0.412982[/C][/ROW]
[ROW][C]6[/C][C]-0.025041[/C][C]-0.2697[/C][C]0.393937[/C][/ROW]
[ROW][C]7[/C][C]-0.022025[/C][C]-0.2372[/C][C]0.406452[/C][/ROW]
[ROW][C]8[/C][C]-0.01522[/C][C]-0.1639[/C][C]0.435039[/C][/ROW]
[ROW][C]9[/C][C]-0.017489[/C][C]-0.1884[/C][C]0.425462[/C][/ROW]
[ROW][C]10[/C][C]-0.016099[/C][C]-0.1734[/C][C]0.431323[/C][/ROW]
[ROW][C]11[/C][C]-0.010521[/C][C]-0.1133[/C][C]0.454987[/C][/ROW]
[ROW][C]12[/C][C]-0.01409[/C][C]-0.1518[/C][C]0.439821[/C][/ROW]
[ROW][C]13[/C][C]-0.021942[/C][C]-0.2363[/C][C]0.406799[/C][/ROW]
[ROW][C]14[/C][C]-0.017245[/C][C]-0.1857[/C][C]0.42649[/C][/ROW]
[ROW][C]15[/C][C]-0.016035[/C][C]-0.1727[/C][C]0.431593[/C][/ROW]
[ROW][C]16[/C][C]-0.013614[/C][C]-0.1466[/C][C]0.441839[/C][/ROW]
[ROW][C]17[/C][C]-0.014229[/C][C]-0.1532[/C][C]0.439234[/C][/ROW]
[ROW][C]18[/C][C]-0.016163[/C][C]-0.1741[/C][C]0.431053[/C][/ROW]
[ROW][C]19[/C][C]-0.0147[/C][C]-0.1583[/C][C]0.437238[/C][/ROW]
[ROW][C]20[/C][C]-0.015496[/C][C]-0.1669[/C][C]0.433869[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298382&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298382&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.9768510.5210
2-0.008197-0.08830.464903
3-0.016918-0.18220.427867
4-0.020399-0.21970.413246
5-0.020462-0.22040.412982
6-0.025041-0.26970.393937
7-0.022025-0.23720.406452
8-0.01522-0.16390.435039
9-0.017489-0.18840.425462
10-0.016099-0.17340.431323
11-0.010521-0.11330.454987
12-0.01409-0.15180.439821
13-0.021942-0.23630.406799
14-0.017245-0.18570.42649
15-0.016035-0.17270.431593
16-0.013614-0.14660.441839
17-0.014229-0.15320.439234
18-0.016163-0.17410.431053
19-0.0147-0.15830.437238
20-0.015496-0.16690.433869



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')