Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 07 Dec 2016 23:47:40 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/08/t14811518244h0dasiidprdwbg.htm/, Retrieved Fri, 01 Nov 2024 04:29:03 +0100
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Fri, 01 Nov 2024 04:29:03 +0100
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
11	2
9	4
12	4
NA	4
NA	3
12	4
12	1
NA	4
NA	3
11	4
12	2
12	4
15	4
13	5
12	4
11	1
NA	2
NA	4
9	4
NA	5
11	5
NA	4
12	1
NA	4
NA	2
NA	4
12	5
12	3
14	5
NA	3
12	5
9	2
13	1
NA	NA
13	4
12	4
NA	3
12	5
12	4
12	NA
NA	4
12	2
11	3
13	1
13	3
NA	3
NA	3
13	4
10	4
NA	4
13	4
NA	4
NA	2
5	5
NA	3
10	3
NA	4
15	4
13	4
NA	3
12	4
13	4
13	4
11	4
NA	4
NA	2
12	4
12	4
13	4
14	4
NA	4
NA	5
NA	3
NA	2
NA	4
12	5
12	4
10	5
12	5
12	2
NA	4
NA	4
12	4
13	3
NA	4
14	2
10	5
12	3
NA	4
13	2
11	4
NA	3
12	3
NA	4
12	4
13	4
12	3
9	4
NA	3
12	3
NA	1
14	4
NA	3
11	3
NA	5
NA	5
NA	4
NA	5
NA	4
12	4
NA	4
NA	4
NA	3
12	4
NA	3
9	4
13	2
NA	1
10	5
14	4
10	3
12	4
NA	4
11	4
NA	4
14	2
13	4
12	4
NA	4
NA	4
10	3
NA	4
12	5
NA	2
12	5
NA	4
15	3
NA	NA
NA	2
12	2
12	2
10	4
12	4
12	5
NA	3
12	3
11	4
13	4
NA	4
NA	4
NA	4
13	4
11	4
10	2
9	5
NA	4
12	4
NA	4
NA	4
13	4
10	2
13	3
NA	3
NA	4
NA	4
NA	4
12	4
NA	3
12	3




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center
R Engine error message
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Engine error message & 
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Engine error message[/C][C]
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center
R Engine error message
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted







Multiple Linear Regression - Estimated Regression Equation
GW[t] = + 12.4001 -0.154457Imago[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
GW[t] =  +  12.4001 -0.154457Imago[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]GW[t] =  +  12.4001 -0.154457Imago[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
GW[t] = + 12.4001 -0.154457Imago[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.4 0.535+2.3180e+01 4.188e-41 2.094e-41
Imago-0.1545 0.1431-1.0790e+00 0.2833 0.1417

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +12.4 &  0.535 & +2.3180e+01 &  4.188e-41 &  2.094e-41 \tabularnewline
Imago & -0.1545 &  0.1431 & -1.0790e+00 &  0.2833 &  0.1417 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+12.4[/C][C] 0.535[/C][C]+2.3180e+01[/C][C] 4.188e-41[/C][C] 2.094e-41[/C][/ROW]
[ROW][C]Imago[/C][C]-0.1545[/C][C] 0.1431[/C][C]-1.0790e+00[/C][C] 0.2833[/C][C] 0.1417[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.4 0.535+2.3180e+01 4.188e-41 2.094e-41
Imago-0.1545 0.1431-1.0790e+00 0.2833 0.1417







Multiple Linear Regression - Regression Statistics
Multiple R 0.1095
R-squared 0.01198
Adjusted R-squared 0.00169
F-TEST (value) 1.164
F-TEST (DF numerator)1
F-TEST (DF denominator)96
p-value 0.2833
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.514
Sum Squared Residuals 220

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1095 \tabularnewline
R-squared &  0.01198 \tabularnewline
Adjusted R-squared &  0.00169 \tabularnewline
F-TEST (value) &  1.164 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 96 \tabularnewline
p-value &  0.2833 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.514 \tabularnewline
Sum Squared Residuals &  220 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1095[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.01198[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.00169[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.164[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]96[/C][/ROW]
[ROW][C]p-value[/C][C] 0.2833[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.514[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 220[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1095
R-squared 0.01198
Adjusted R-squared 0.00169
F-TEST (value) 1.164
F-TEST (DF numerator)1
F-TEST (DF denominator)96
p-value 0.2833
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.514
Sum Squared Residuals 220







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 12.09-1.091
2 9 11.78-2.782
3 12 11.78 0.2177
4 12 11.78 0.2177
5 12 12.25-0.2457
6 11 11.78-0.7823
7 12 12.09-0.09123
8 12 11.78 0.2177
9 15 11.78 3.218
10 13 11.63 1.372
11 12 11.78 0.2177
12 11 12.25-1.246
13 9 11.78-2.782
14 11 11.63-0.6279
15 12 12.25-0.2457
16 12 11.63 0.3721
17 12 11.94 0.06322
18 14 11.63 2.372
19 12 11.63 0.3721
20 9 12.09-3.091
21 13 12.25 0.7543
22 13 11.78 1.218
23 12 11.78 0.2177
24 12 11.63 0.3721
25 12 11.78 0.2177
26 12 12.09-0.09123
27 11 11.94-0.9368
28 13 12.25 0.7543
29 13 11.94 1.063
30 13 11.78 1.218
31 10 11.78-1.782
32 13 11.78 1.218
33 5 11.63-6.628
34 10 11.94-1.937
35 15 11.78 3.218
36 13 11.78 1.218
37 12 11.78 0.2177
38 13 11.78 1.218
39 13 11.78 1.218
40 11 11.78-0.7823
41 12 11.78 0.2177
42 12 11.78 0.2177
43 13 11.78 1.218
44 14 11.78 2.218
45 12 11.63 0.3721
46 12 11.78 0.2177
47 10 11.63-1.628
48 12 11.63 0.3721
49 12 12.09-0.09123
50 12 11.78 0.2177
51 13 11.94 1.063
52 14 12.09 1.909
53 10 11.63-1.628
54 12 11.94 0.06322
55 13 12.09 0.9088
56 11 11.78-0.7823
57 12 11.94 0.06322
58 12 11.78 0.2177
59 13 11.78 1.218
60 12 11.94 0.06322
61 9 11.78-2.782
62 12 11.94 0.06322
63 14 11.78 2.218
64 11 11.94-0.9368
65 12 11.78 0.2177
66 12 11.78 0.2177
67 9 11.78-2.782
68 13 12.09 0.9088
69 10 11.63-1.628
70 14 11.78 2.218
71 10 11.94-1.937
72 12 11.78 0.2177
73 11 11.78-0.7823
74 14 12.09 1.909
75 13 11.78 1.218
76 12 11.78 0.2177
77 10 11.94-1.937
78 12 11.63 0.3721
79 12 11.63 0.3721
80 15 11.94 3.063
81 12 12.09-0.09123
82 12 12.09-0.09123
83 10 11.78-1.782
84 12 11.78 0.2177
85 12 11.63 0.3721
86 12 11.94 0.06322
87 11 11.78-0.7823
88 13 11.78 1.218
89 13 11.78 1.218
90 11 11.78-0.7823
91 10 12.09-2.091
92 9 11.63-2.628
93 12 11.78 0.2177
94 13 11.78 1.218
95 10 12.09-2.091
96 13 11.94 1.063
97 12 11.78 0.2177
98 12 11.94 0.06322

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  11 &  12.09 & -1.091 \tabularnewline
2 &  9 &  11.78 & -2.782 \tabularnewline
3 &  12 &  11.78 &  0.2177 \tabularnewline
4 &  12 &  11.78 &  0.2177 \tabularnewline
5 &  12 &  12.25 & -0.2457 \tabularnewline
6 &  11 &  11.78 & -0.7823 \tabularnewline
7 &  12 &  12.09 & -0.09123 \tabularnewline
8 &  12 &  11.78 &  0.2177 \tabularnewline
9 &  15 &  11.78 &  3.218 \tabularnewline
10 &  13 &  11.63 &  1.372 \tabularnewline
11 &  12 &  11.78 &  0.2177 \tabularnewline
12 &  11 &  12.25 & -1.246 \tabularnewline
13 &  9 &  11.78 & -2.782 \tabularnewline
14 &  11 &  11.63 & -0.6279 \tabularnewline
15 &  12 &  12.25 & -0.2457 \tabularnewline
16 &  12 &  11.63 &  0.3721 \tabularnewline
17 &  12 &  11.94 &  0.06322 \tabularnewline
18 &  14 &  11.63 &  2.372 \tabularnewline
19 &  12 &  11.63 &  0.3721 \tabularnewline
20 &  9 &  12.09 & -3.091 \tabularnewline
21 &  13 &  12.25 &  0.7543 \tabularnewline
22 &  13 &  11.78 &  1.218 \tabularnewline
23 &  12 &  11.78 &  0.2177 \tabularnewline
24 &  12 &  11.63 &  0.3721 \tabularnewline
25 &  12 &  11.78 &  0.2177 \tabularnewline
26 &  12 &  12.09 & -0.09123 \tabularnewline
27 &  11 &  11.94 & -0.9368 \tabularnewline
28 &  13 &  12.25 &  0.7543 \tabularnewline
29 &  13 &  11.94 &  1.063 \tabularnewline
30 &  13 &  11.78 &  1.218 \tabularnewline
31 &  10 &  11.78 & -1.782 \tabularnewline
32 &  13 &  11.78 &  1.218 \tabularnewline
33 &  5 &  11.63 & -6.628 \tabularnewline
34 &  10 &  11.94 & -1.937 \tabularnewline
35 &  15 &  11.78 &  3.218 \tabularnewline
36 &  13 &  11.78 &  1.218 \tabularnewline
37 &  12 &  11.78 &  0.2177 \tabularnewline
38 &  13 &  11.78 &  1.218 \tabularnewline
39 &  13 &  11.78 &  1.218 \tabularnewline
40 &  11 &  11.78 & -0.7823 \tabularnewline
41 &  12 &  11.78 &  0.2177 \tabularnewline
42 &  12 &  11.78 &  0.2177 \tabularnewline
43 &  13 &  11.78 &  1.218 \tabularnewline
44 &  14 &  11.78 &  2.218 \tabularnewline
45 &  12 &  11.63 &  0.3721 \tabularnewline
46 &  12 &  11.78 &  0.2177 \tabularnewline
47 &  10 &  11.63 & -1.628 \tabularnewline
48 &  12 &  11.63 &  0.3721 \tabularnewline
49 &  12 &  12.09 & -0.09123 \tabularnewline
50 &  12 &  11.78 &  0.2177 \tabularnewline
51 &  13 &  11.94 &  1.063 \tabularnewline
52 &  14 &  12.09 &  1.909 \tabularnewline
53 &  10 &  11.63 & -1.628 \tabularnewline
54 &  12 &  11.94 &  0.06322 \tabularnewline
55 &  13 &  12.09 &  0.9088 \tabularnewline
56 &  11 &  11.78 & -0.7823 \tabularnewline
57 &  12 &  11.94 &  0.06322 \tabularnewline
58 &  12 &  11.78 &  0.2177 \tabularnewline
59 &  13 &  11.78 &  1.218 \tabularnewline
60 &  12 &  11.94 &  0.06322 \tabularnewline
61 &  9 &  11.78 & -2.782 \tabularnewline
62 &  12 &  11.94 &  0.06322 \tabularnewline
63 &  14 &  11.78 &  2.218 \tabularnewline
64 &  11 &  11.94 & -0.9368 \tabularnewline
65 &  12 &  11.78 &  0.2177 \tabularnewline
66 &  12 &  11.78 &  0.2177 \tabularnewline
67 &  9 &  11.78 & -2.782 \tabularnewline
68 &  13 &  12.09 &  0.9088 \tabularnewline
69 &  10 &  11.63 & -1.628 \tabularnewline
70 &  14 &  11.78 &  2.218 \tabularnewline
71 &  10 &  11.94 & -1.937 \tabularnewline
72 &  12 &  11.78 &  0.2177 \tabularnewline
73 &  11 &  11.78 & -0.7823 \tabularnewline
74 &  14 &  12.09 &  1.909 \tabularnewline
75 &  13 &  11.78 &  1.218 \tabularnewline
76 &  12 &  11.78 &  0.2177 \tabularnewline
77 &  10 &  11.94 & -1.937 \tabularnewline
78 &  12 &  11.63 &  0.3721 \tabularnewline
79 &  12 &  11.63 &  0.3721 \tabularnewline
80 &  15 &  11.94 &  3.063 \tabularnewline
81 &  12 &  12.09 & -0.09123 \tabularnewline
82 &  12 &  12.09 & -0.09123 \tabularnewline
83 &  10 &  11.78 & -1.782 \tabularnewline
84 &  12 &  11.78 &  0.2177 \tabularnewline
85 &  12 &  11.63 &  0.3721 \tabularnewline
86 &  12 &  11.94 &  0.06322 \tabularnewline
87 &  11 &  11.78 & -0.7823 \tabularnewline
88 &  13 &  11.78 &  1.218 \tabularnewline
89 &  13 &  11.78 &  1.218 \tabularnewline
90 &  11 &  11.78 & -0.7823 \tabularnewline
91 &  10 &  12.09 & -2.091 \tabularnewline
92 &  9 &  11.63 & -2.628 \tabularnewline
93 &  12 &  11.78 &  0.2177 \tabularnewline
94 &  13 &  11.78 &  1.218 \tabularnewline
95 &  10 &  12.09 & -2.091 \tabularnewline
96 &  13 &  11.94 &  1.063 \tabularnewline
97 &  12 &  11.78 &  0.2177 \tabularnewline
98 &  12 &  11.94 &  0.06322 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 11[/C][C] 12.09[/C][C]-1.091[/C][/ROW]
[ROW][C]2[/C][C] 9[/C][C] 11.78[/C][C]-2.782[/C][/ROW]
[ROW][C]3[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]4[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 12.25[/C][C]-0.2457[/C][/ROW]
[ROW][C]6[/C][C] 11[/C][C] 11.78[/C][C]-0.7823[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 12.09[/C][C]-0.09123[/C][/ROW]
[ROW][C]8[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]9[/C][C] 15[/C][C] 11.78[/C][C] 3.218[/C][/ROW]
[ROW][C]10[/C][C] 13[/C][C] 11.63[/C][C] 1.372[/C][/ROW]
[ROW][C]11[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 12.25[/C][C]-1.246[/C][/ROW]
[ROW][C]13[/C][C] 9[/C][C] 11.78[/C][C]-2.782[/C][/ROW]
[ROW][C]14[/C][C] 11[/C][C] 11.63[/C][C]-0.6279[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 12.25[/C][C]-0.2457[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 11.63[/C][C] 0.3721[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 11.94[/C][C] 0.06322[/C][/ROW]
[ROW][C]18[/C][C] 14[/C][C] 11.63[/C][C] 2.372[/C][/ROW]
[ROW][C]19[/C][C] 12[/C][C] 11.63[/C][C] 0.3721[/C][/ROW]
[ROW][C]20[/C][C] 9[/C][C] 12.09[/C][C]-3.091[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 12.25[/C][C] 0.7543[/C][/ROW]
[ROW][C]22[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]23[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]24[/C][C] 12[/C][C] 11.63[/C][C] 0.3721[/C][/ROW]
[ROW][C]25[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]26[/C][C] 12[/C][C] 12.09[/C][C]-0.09123[/C][/ROW]
[ROW][C]27[/C][C] 11[/C][C] 11.94[/C][C]-0.9368[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 12.25[/C][C] 0.7543[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 11.94[/C][C] 1.063[/C][/ROW]
[ROW][C]30[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]31[/C][C] 10[/C][C] 11.78[/C][C]-1.782[/C][/ROW]
[ROW][C]32[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]33[/C][C] 5[/C][C] 11.63[/C][C]-6.628[/C][/ROW]
[ROW][C]34[/C][C] 10[/C][C] 11.94[/C][C]-1.937[/C][/ROW]
[ROW][C]35[/C][C] 15[/C][C] 11.78[/C][C] 3.218[/C][/ROW]
[ROW][C]36[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]37[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]38[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]39[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]40[/C][C] 11[/C][C] 11.78[/C][C]-0.7823[/C][/ROW]
[ROW][C]41[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]42[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]43[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]44[/C][C] 14[/C][C] 11.78[/C][C] 2.218[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 11.63[/C][C] 0.3721[/C][/ROW]
[ROW][C]46[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]47[/C][C] 10[/C][C] 11.63[/C][C]-1.628[/C][/ROW]
[ROW][C]48[/C][C] 12[/C][C] 11.63[/C][C] 0.3721[/C][/ROW]
[ROW][C]49[/C][C] 12[/C][C] 12.09[/C][C]-0.09123[/C][/ROW]
[ROW][C]50[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]51[/C][C] 13[/C][C] 11.94[/C][C] 1.063[/C][/ROW]
[ROW][C]52[/C][C] 14[/C][C] 12.09[/C][C] 1.909[/C][/ROW]
[ROW][C]53[/C][C] 10[/C][C] 11.63[/C][C]-1.628[/C][/ROW]
[ROW][C]54[/C][C] 12[/C][C] 11.94[/C][C] 0.06322[/C][/ROW]
[ROW][C]55[/C][C] 13[/C][C] 12.09[/C][C] 0.9088[/C][/ROW]
[ROW][C]56[/C][C] 11[/C][C] 11.78[/C][C]-0.7823[/C][/ROW]
[ROW][C]57[/C][C] 12[/C][C] 11.94[/C][C] 0.06322[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]59[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]60[/C][C] 12[/C][C] 11.94[/C][C] 0.06322[/C][/ROW]
[ROW][C]61[/C][C] 9[/C][C] 11.78[/C][C]-2.782[/C][/ROW]
[ROW][C]62[/C][C] 12[/C][C] 11.94[/C][C] 0.06322[/C][/ROW]
[ROW][C]63[/C][C] 14[/C][C] 11.78[/C][C] 2.218[/C][/ROW]
[ROW][C]64[/C][C] 11[/C][C] 11.94[/C][C]-0.9368[/C][/ROW]
[ROW][C]65[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]66[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]67[/C][C] 9[/C][C] 11.78[/C][C]-2.782[/C][/ROW]
[ROW][C]68[/C][C] 13[/C][C] 12.09[/C][C] 0.9088[/C][/ROW]
[ROW][C]69[/C][C] 10[/C][C] 11.63[/C][C]-1.628[/C][/ROW]
[ROW][C]70[/C][C] 14[/C][C] 11.78[/C][C] 2.218[/C][/ROW]
[ROW][C]71[/C][C] 10[/C][C] 11.94[/C][C]-1.937[/C][/ROW]
[ROW][C]72[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]73[/C][C] 11[/C][C] 11.78[/C][C]-0.7823[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 12.09[/C][C] 1.909[/C][/ROW]
[ROW][C]75[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]76[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]77[/C][C] 10[/C][C] 11.94[/C][C]-1.937[/C][/ROW]
[ROW][C]78[/C][C] 12[/C][C] 11.63[/C][C] 0.3721[/C][/ROW]
[ROW][C]79[/C][C] 12[/C][C] 11.63[/C][C] 0.3721[/C][/ROW]
[ROW][C]80[/C][C] 15[/C][C] 11.94[/C][C] 3.063[/C][/ROW]
[ROW][C]81[/C][C] 12[/C][C] 12.09[/C][C]-0.09123[/C][/ROW]
[ROW][C]82[/C][C] 12[/C][C] 12.09[/C][C]-0.09123[/C][/ROW]
[ROW][C]83[/C][C] 10[/C][C] 11.78[/C][C]-1.782[/C][/ROW]
[ROW][C]84[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]85[/C][C] 12[/C][C] 11.63[/C][C] 0.3721[/C][/ROW]
[ROW][C]86[/C][C] 12[/C][C] 11.94[/C][C] 0.06322[/C][/ROW]
[ROW][C]87[/C][C] 11[/C][C] 11.78[/C][C]-0.7823[/C][/ROW]
[ROW][C]88[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]89[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]90[/C][C] 11[/C][C] 11.78[/C][C]-0.7823[/C][/ROW]
[ROW][C]91[/C][C] 10[/C][C] 12.09[/C][C]-2.091[/C][/ROW]
[ROW][C]92[/C][C] 9[/C][C] 11.63[/C][C]-2.628[/C][/ROW]
[ROW][C]93[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]94[/C][C] 13[/C][C] 11.78[/C][C] 1.218[/C][/ROW]
[ROW][C]95[/C][C] 10[/C][C] 12.09[/C][C]-2.091[/C][/ROW]
[ROW][C]96[/C][C] 13[/C][C] 11.94[/C][C] 1.063[/C][/ROW]
[ROW][C]97[/C][C] 12[/C][C] 11.78[/C][C] 0.2177[/C][/ROW]
[ROW][C]98[/C][C] 12[/C][C] 11.94[/C][C] 0.06322[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 12.09-1.091
2 9 11.78-2.782
3 12 11.78 0.2177
4 12 11.78 0.2177
5 12 12.25-0.2457
6 11 11.78-0.7823
7 12 12.09-0.09123
8 12 11.78 0.2177
9 15 11.78 3.218
10 13 11.63 1.372
11 12 11.78 0.2177
12 11 12.25-1.246
13 9 11.78-2.782
14 11 11.63-0.6279
15 12 12.25-0.2457
16 12 11.63 0.3721
17 12 11.94 0.06322
18 14 11.63 2.372
19 12 11.63 0.3721
20 9 12.09-3.091
21 13 12.25 0.7543
22 13 11.78 1.218
23 12 11.78 0.2177
24 12 11.63 0.3721
25 12 11.78 0.2177
26 12 12.09-0.09123
27 11 11.94-0.9368
28 13 12.25 0.7543
29 13 11.94 1.063
30 13 11.78 1.218
31 10 11.78-1.782
32 13 11.78 1.218
33 5 11.63-6.628
34 10 11.94-1.937
35 15 11.78 3.218
36 13 11.78 1.218
37 12 11.78 0.2177
38 13 11.78 1.218
39 13 11.78 1.218
40 11 11.78-0.7823
41 12 11.78 0.2177
42 12 11.78 0.2177
43 13 11.78 1.218
44 14 11.78 2.218
45 12 11.63 0.3721
46 12 11.78 0.2177
47 10 11.63-1.628
48 12 11.63 0.3721
49 12 12.09-0.09123
50 12 11.78 0.2177
51 13 11.94 1.063
52 14 12.09 1.909
53 10 11.63-1.628
54 12 11.94 0.06322
55 13 12.09 0.9088
56 11 11.78-0.7823
57 12 11.94 0.06322
58 12 11.78 0.2177
59 13 11.78 1.218
60 12 11.94 0.06322
61 9 11.78-2.782
62 12 11.94 0.06322
63 14 11.78 2.218
64 11 11.94-0.9368
65 12 11.78 0.2177
66 12 11.78 0.2177
67 9 11.78-2.782
68 13 12.09 0.9088
69 10 11.63-1.628
70 14 11.78 2.218
71 10 11.94-1.937
72 12 11.78 0.2177
73 11 11.78-0.7823
74 14 12.09 1.909
75 13 11.78 1.218
76 12 11.78 0.2177
77 10 11.94-1.937
78 12 11.63 0.3721
79 12 11.63 0.3721
80 15 11.94 3.063
81 12 12.09-0.09123
82 12 12.09-0.09123
83 10 11.78-1.782
84 12 11.78 0.2177
85 12 11.63 0.3721
86 12 11.94 0.06322
87 11 11.78-0.7823
88 13 11.78 1.218
89 13 11.78 1.218
90 11 11.78-0.7823
91 10 12.09-2.091
92 9 11.63-2.628
93 12 11.78 0.2177
94 13 11.78 1.218
95 10 12.09-2.091
96 13 11.94 1.063
97 12 11.78 0.2177
98 12 11.94 0.06322







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5 0.5589 0.8823 0.4411
6 0.3889 0.7777 0.6111
7 0.2645 0.529 0.7355
8 0.2035 0.4069 0.7965
9 0.6968 0.6063 0.3032
10 0.638 0.7241 0.362
11 0.5367 0.9266 0.4633
12 0.4512 0.9024 0.5488
13 0.6686 0.6629 0.3314
14 0.602 0.796 0.398
15 0.5252 0.9495 0.4748
16 0.4446 0.8893 0.5554
17 0.368 0.736 0.632
18 0.4582 0.9163 0.5418
19 0.3827 0.7654 0.6173
20 0.54 0.9199 0.46
21 0.5454 0.9092 0.4546
22 0.5168 0.9665 0.4832
23 0.446 0.8921 0.554
24 0.3798 0.7596 0.6202
25 0.3158 0.6317 0.6842
26 0.2617 0.5235 0.7383
27 0.2255 0.451 0.7745
28 0.2149 0.4298 0.7851
29 0.1951 0.3903 0.8049
30 0.1768 0.3537 0.8232
31 0.2048 0.4096 0.7952
32 0.1873 0.3746 0.8127
33 0.97 0.05998 0.02999
34 0.9747 0.05059 0.0253
35 0.9933 0.01349 0.006745
36 0.9922 0.01565 0.007823
37 0.9884 0.02315 0.01157
38 0.9867 0.02662 0.01331
39 0.9847 0.03054 0.01527
40 0.9799 0.04011 0.02006
41 0.9718 0.05643 0.02821
42 0.9611 0.07788 0.03894
43 0.9565 0.0871 0.04355
44 0.9701 0.05987 0.02993
45 0.9601 0.07971 0.03986
46 0.9463 0.1075 0.05373
47 0.9473 0.1055 0.05274
48 0.9317 0.1365 0.06826
49 0.911 0.1779 0.08896
50 0.8858 0.2284 0.1142
51 0.8698 0.2604 0.1302
52 0.8836 0.2328 0.1164
53 0.8852 0.2296 0.1148
54 0.8537 0.2926 0.1463
55 0.8302 0.3396 0.1698
56 0.8003 0.3995 0.1997
57 0.7558 0.4884 0.2442
58 0.7076 0.5848 0.2924
59 0.6909 0.6181 0.3091
60 0.6359 0.7282 0.3641
61 0.7561 0.4878 0.2439
62 0.7054 0.5892 0.2946
63 0.7674 0.4652 0.2326
64 0.7356 0.5288 0.2644
65 0.6835 0.633 0.3165
66 0.6272 0.7455 0.3728
67 0.7555 0.4891 0.2445
68 0.7229 0.5542 0.2771
69 0.7379 0.5242 0.2621
70 0.7978 0.4043 0.2022
71 0.8268 0.3464 0.1732
72 0.78 0.44 0.22
73 0.7419 0.5161 0.2581
74 0.7943 0.4114 0.2057
75 0.7778 0.4445 0.2222
76 0.721 0.558 0.279
77 0.7509 0.4982 0.2491
78 0.6888 0.6223 0.3112
79 0.6203 0.7594 0.3797
80 0.8662 0.2675 0.1338
81 0.8213 0.3574 0.1787
82 0.7705 0.4589 0.2295
83 0.7961 0.4078 0.2039
84 0.7277 0.5447 0.2723
85 0.6451 0.7099 0.3549
86 0.5613 0.8774 0.4387
87 0.4833 0.9666 0.5167
88 0.4546 0.9092 0.5454
89 0.4459 0.8917 0.5541
90 0.3411 0.6822 0.6589
91 0.3352 0.6704 0.6648
92 0.8442 0.3116 0.1558
93 0.7555 0.4889 0.2445

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 &  0.5589 &  0.8823 &  0.4411 \tabularnewline
6 &  0.3889 &  0.7777 &  0.6111 \tabularnewline
7 &  0.2645 &  0.529 &  0.7355 \tabularnewline
8 &  0.2035 &  0.4069 &  0.7965 \tabularnewline
9 &  0.6968 &  0.6063 &  0.3032 \tabularnewline
10 &  0.638 &  0.7241 &  0.362 \tabularnewline
11 &  0.5367 &  0.9266 &  0.4633 \tabularnewline
12 &  0.4512 &  0.9024 &  0.5488 \tabularnewline
13 &  0.6686 &  0.6629 &  0.3314 \tabularnewline
14 &  0.602 &  0.796 &  0.398 \tabularnewline
15 &  0.5252 &  0.9495 &  0.4748 \tabularnewline
16 &  0.4446 &  0.8893 &  0.5554 \tabularnewline
17 &  0.368 &  0.736 &  0.632 \tabularnewline
18 &  0.4582 &  0.9163 &  0.5418 \tabularnewline
19 &  0.3827 &  0.7654 &  0.6173 \tabularnewline
20 &  0.54 &  0.9199 &  0.46 \tabularnewline
21 &  0.5454 &  0.9092 &  0.4546 \tabularnewline
22 &  0.5168 &  0.9665 &  0.4832 \tabularnewline
23 &  0.446 &  0.8921 &  0.554 \tabularnewline
24 &  0.3798 &  0.7596 &  0.6202 \tabularnewline
25 &  0.3158 &  0.6317 &  0.6842 \tabularnewline
26 &  0.2617 &  0.5235 &  0.7383 \tabularnewline
27 &  0.2255 &  0.451 &  0.7745 \tabularnewline
28 &  0.2149 &  0.4298 &  0.7851 \tabularnewline
29 &  0.1951 &  0.3903 &  0.8049 \tabularnewline
30 &  0.1768 &  0.3537 &  0.8232 \tabularnewline
31 &  0.2048 &  0.4096 &  0.7952 \tabularnewline
32 &  0.1873 &  0.3746 &  0.8127 \tabularnewline
33 &  0.97 &  0.05998 &  0.02999 \tabularnewline
34 &  0.9747 &  0.05059 &  0.0253 \tabularnewline
35 &  0.9933 &  0.01349 &  0.006745 \tabularnewline
36 &  0.9922 &  0.01565 &  0.007823 \tabularnewline
37 &  0.9884 &  0.02315 &  0.01157 \tabularnewline
38 &  0.9867 &  0.02662 &  0.01331 \tabularnewline
39 &  0.9847 &  0.03054 &  0.01527 \tabularnewline
40 &  0.9799 &  0.04011 &  0.02006 \tabularnewline
41 &  0.9718 &  0.05643 &  0.02821 \tabularnewline
42 &  0.9611 &  0.07788 &  0.03894 \tabularnewline
43 &  0.9565 &  0.0871 &  0.04355 \tabularnewline
44 &  0.9701 &  0.05987 &  0.02993 \tabularnewline
45 &  0.9601 &  0.07971 &  0.03986 \tabularnewline
46 &  0.9463 &  0.1075 &  0.05373 \tabularnewline
47 &  0.9473 &  0.1055 &  0.05274 \tabularnewline
48 &  0.9317 &  0.1365 &  0.06826 \tabularnewline
49 &  0.911 &  0.1779 &  0.08896 \tabularnewline
50 &  0.8858 &  0.2284 &  0.1142 \tabularnewline
51 &  0.8698 &  0.2604 &  0.1302 \tabularnewline
52 &  0.8836 &  0.2328 &  0.1164 \tabularnewline
53 &  0.8852 &  0.2296 &  0.1148 \tabularnewline
54 &  0.8537 &  0.2926 &  0.1463 \tabularnewline
55 &  0.8302 &  0.3396 &  0.1698 \tabularnewline
56 &  0.8003 &  0.3995 &  0.1997 \tabularnewline
57 &  0.7558 &  0.4884 &  0.2442 \tabularnewline
58 &  0.7076 &  0.5848 &  0.2924 \tabularnewline
59 &  0.6909 &  0.6181 &  0.3091 \tabularnewline
60 &  0.6359 &  0.7282 &  0.3641 \tabularnewline
61 &  0.7561 &  0.4878 &  0.2439 \tabularnewline
62 &  0.7054 &  0.5892 &  0.2946 \tabularnewline
63 &  0.7674 &  0.4652 &  0.2326 \tabularnewline
64 &  0.7356 &  0.5288 &  0.2644 \tabularnewline
65 &  0.6835 &  0.633 &  0.3165 \tabularnewline
66 &  0.6272 &  0.7455 &  0.3728 \tabularnewline
67 &  0.7555 &  0.4891 &  0.2445 \tabularnewline
68 &  0.7229 &  0.5542 &  0.2771 \tabularnewline
69 &  0.7379 &  0.5242 &  0.2621 \tabularnewline
70 &  0.7978 &  0.4043 &  0.2022 \tabularnewline
71 &  0.8268 &  0.3464 &  0.1732 \tabularnewline
72 &  0.78 &  0.44 &  0.22 \tabularnewline
73 &  0.7419 &  0.5161 &  0.2581 \tabularnewline
74 &  0.7943 &  0.4114 &  0.2057 \tabularnewline
75 &  0.7778 &  0.4445 &  0.2222 \tabularnewline
76 &  0.721 &  0.558 &  0.279 \tabularnewline
77 &  0.7509 &  0.4982 &  0.2491 \tabularnewline
78 &  0.6888 &  0.6223 &  0.3112 \tabularnewline
79 &  0.6203 &  0.7594 &  0.3797 \tabularnewline
80 &  0.8662 &  0.2675 &  0.1338 \tabularnewline
81 &  0.8213 &  0.3574 &  0.1787 \tabularnewline
82 &  0.7705 &  0.4589 &  0.2295 \tabularnewline
83 &  0.7961 &  0.4078 &  0.2039 \tabularnewline
84 &  0.7277 &  0.5447 &  0.2723 \tabularnewline
85 &  0.6451 &  0.7099 &  0.3549 \tabularnewline
86 &  0.5613 &  0.8774 &  0.4387 \tabularnewline
87 &  0.4833 &  0.9666 &  0.5167 \tabularnewline
88 &  0.4546 &  0.9092 &  0.5454 \tabularnewline
89 &  0.4459 &  0.8917 &  0.5541 \tabularnewline
90 &  0.3411 &  0.6822 &  0.6589 \tabularnewline
91 &  0.3352 &  0.6704 &  0.6648 \tabularnewline
92 &  0.8442 &  0.3116 &  0.1558 \tabularnewline
93 &  0.7555 &  0.4889 &  0.2445 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C] 0.5589[/C][C] 0.8823[/C][C] 0.4411[/C][/ROW]
[ROW][C]6[/C][C] 0.3889[/C][C] 0.7777[/C][C] 0.6111[/C][/ROW]
[ROW][C]7[/C][C] 0.2645[/C][C] 0.529[/C][C] 0.7355[/C][/ROW]
[ROW][C]8[/C][C] 0.2035[/C][C] 0.4069[/C][C] 0.7965[/C][/ROW]
[ROW][C]9[/C][C] 0.6968[/C][C] 0.6063[/C][C] 0.3032[/C][/ROW]
[ROW][C]10[/C][C] 0.638[/C][C] 0.7241[/C][C] 0.362[/C][/ROW]
[ROW][C]11[/C][C] 0.5367[/C][C] 0.9266[/C][C] 0.4633[/C][/ROW]
[ROW][C]12[/C][C] 0.4512[/C][C] 0.9024[/C][C] 0.5488[/C][/ROW]
[ROW][C]13[/C][C] 0.6686[/C][C] 0.6629[/C][C] 0.3314[/C][/ROW]
[ROW][C]14[/C][C] 0.602[/C][C] 0.796[/C][C] 0.398[/C][/ROW]
[ROW][C]15[/C][C] 0.5252[/C][C] 0.9495[/C][C] 0.4748[/C][/ROW]
[ROW][C]16[/C][C] 0.4446[/C][C] 0.8893[/C][C] 0.5554[/C][/ROW]
[ROW][C]17[/C][C] 0.368[/C][C] 0.736[/C][C] 0.632[/C][/ROW]
[ROW][C]18[/C][C] 0.4582[/C][C] 0.9163[/C][C] 0.5418[/C][/ROW]
[ROW][C]19[/C][C] 0.3827[/C][C] 0.7654[/C][C] 0.6173[/C][/ROW]
[ROW][C]20[/C][C] 0.54[/C][C] 0.9199[/C][C] 0.46[/C][/ROW]
[ROW][C]21[/C][C] 0.5454[/C][C] 0.9092[/C][C] 0.4546[/C][/ROW]
[ROW][C]22[/C][C] 0.5168[/C][C] 0.9665[/C][C] 0.4832[/C][/ROW]
[ROW][C]23[/C][C] 0.446[/C][C] 0.8921[/C][C] 0.554[/C][/ROW]
[ROW][C]24[/C][C] 0.3798[/C][C] 0.7596[/C][C] 0.6202[/C][/ROW]
[ROW][C]25[/C][C] 0.3158[/C][C] 0.6317[/C][C] 0.6842[/C][/ROW]
[ROW][C]26[/C][C] 0.2617[/C][C] 0.5235[/C][C] 0.7383[/C][/ROW]
[ROW][C]27[/C][C] 0.2255[/C][C] 0.451[/C][C] 0.7745[/C][/ROW]
[ROW][C]28[/C][C] 0.2149[/C][C] 0.4298[/C][C] 0.7851[/C][/ROW]
[ROW][C]29[/C][C] 0.1951[/C][C] 0.3903[/C][C] 0.8049[/C][/ROW]
[ROW][C]30[/C][C] 0.1768[/C][C] 0.3537[/C][C] 0.8232[/C][/ROW]
[ROW][C]31[/C][C] 0.2048[/C][C] 0.4096[/C][C] 0.7952[/C][/ROW]
[ROW][C]32[/C][C] 0.1873[/C][C] 0.3746[/C][C] 0.8127[/C][/ROW]
[ROW][C]33[/C][C] 0.97[/C][C] 0.05998[/C][C] 0.02999[/C][/ROW]
[ROW][C]34[/C][C] 0.9747[/C][C] 0.05059[/C][C] 0.0253[/C][/ROW]
[ROW][C]35[/C][C] 0.9933[/C][C] 0.01349[/C][C] 0.006745[/C][/ROW]
[ROW][C]36[/C][C] 0.9922[/C][C] 0.01565[/C][C] 0.007823[/C][/ROW]
[ROW][C]37[/C][C] 0.9884[/C][C] 0.02315[/C][C] 0.01157[/C][/ROW]
[ROW][C]38[/C][C] 0.9867[/C][C] 0.02662[/C][C] 0.01331[/C][/ROW]
[ROW][C]39[/C][C] 0.9847[/C][C] 0.03054[/C][C] 0.01527[/C][/ROW]
[ROW][C]40[/C][C] 0.9799[/C][C] 0.04011[/C][C] 0.02006[/C][/ROW]
[ROW][C]41[/C][C] 0.9718[/C][C] 0.05643[/C][C] 0.02821[/C][/ROW]
[ROW][C]42[/C][C] 0.9611[/C][C] 0.07788[/C][C] 0.03894[/C][/ROW]
[ROW][C]43[/C][C] 0.9565[/C][C] 0.0871[/C][C] 0.04355[/C][/ROW]
[ROW][C]44[/C][C] 0.9701[/C][C] 0.05987[/C][C] 0.02993[/C][/ROW]
[ROW][C]45[/C][C] 0.9601[/C][C] 0.07971[/C][C] 0.03986[/C][/ROW]
[ROW][C]46[/C][C] 0.9463[/C][C] 0.1075[/C][C] 0.05373[/C][/ROW]
[ROW][C]47[/C][C] 0.9473[/C][C] 0.1055[/C][C] 0.05274[/C][/ROW]
[ROW][C]48[/C][C] 0.9317[/C][C] 0.1365[/C][C] 0.06826[/C][/ROW]
[ROW][C]49[/C][C] 0.911[/C][C] 0.1779[/C][C] 0.08896[/C][/ROW]
[ROW][C]50[/C][C] 0.8858[/C][C] 0.2284[/C][C] 0.1142[/C][/ROW]
[ROW][C]51[/C][C] 0.8698[/C][C] 0.2604[/C][C] 0.1302[/C][/ROW]
[ROW][C]52[/C][C] 0.8836[/C][C] 0.2328[/C][C] 0.1164[/C][/ROW]
[ROW][C]53[/C][C] 0.8852[/C][C] 0.2296[/C][C] 0.1148[/C][/ROW]
[ROW][C]54[/C][C] 0.8537[/C][C] 0.2926[/C][C] 0.1463[/C][/ROW]
[ROW][C]55[/C][C] 0.8302[/C][C] 0.3396[/C][C] 0.1698[/C][/ROW]
[ROW][C]56[/C][C] 0.8003[/C][C] 0.3995[/C][C] 0.1997[/C][/ROW]
[ROW][C]57[/C][C] 0.7558[/C][C] 0.4884[/C][C] 0.2442[/C][/ROW]
[ROW][C]58[/C][C] 0.7076[/C][C] 0.5848[/C][C] 0.2924[/C][/ROW]
[ROW][C]59[/C][C] 0.6909[/C][C] 0.6181[/C][C] 0.3091[/C][/ROW]
[ROW][C]60[/C][C] 0.6359[/C][C] 0.7282[/C][C] 0.3641[/C][/ROW]
[ROW][C]61[/C][C] 0.7561[/C][C] 0.4878[/C][C] 0.2439[/C][/ROW]
[ROW][C]62[/C][C] 0.7054[/C][C] 0.5892[/C][C] 0.2946[/C][/ROW]
[ROW][C]63[/C][C] 0.7674[/C][C] 0.4652[/C][C] 0.2326[/C][/ROW]
[ROW][C]64[/C][C] 0.7356[/C][C] 0.5288[/C][C] 0.2644[/C][/ROW]
[ROW][C]65[/C][C] 0.6835[/C][C] 0.633[/C][C] 0.3165[/C][/ROW]
[ROW][C]66[/C][C] 0.6272[/C][C] 0.7455[/C][C] 0.3728[/C][/ROW]
[ROW][C]67[/C][C] 0.7555[/C][C] 0.4891[/C][C] 0.2445[/C][/ROW]
[ROW][C]68[/C][C] 0.7229[/C][C] 0.5542[/C][C] 0.2771[/C][/ROW]
[ROW][C]69[/C][C] 0.7379[/C][C] 0.5242[/C][C] 0.2621[/C][/ROW]
[ROW][C]70[/C][C] 0.7978[/C][C] 0.4043[/C][C] 0.2022[/C][/ROW]
[ROW][C]71[/C][C] 0.8268[/C][C] 0.3464[/C][C] 0.1732[/C][/ROW]
[ROW][C]72[/C][C] 0.78[/C][C] 0.44[/C][C] 0.22[/C][/ROW]
[ROW][C]73[/C][C] 0.7419[/C][C] 0.5161[/C][C] 0.2581[/C][/ROW]
[ROW][C]74[/C][C] 0.7943[/C][C] 0.4114[/C][C] 0.2057[/C][/ROW]
[ROW][C]75[/C][C] 0.7778[/C][C] 0.4445[/C][C] 0.2222[/C][/ROW]
[ROW][C]76[/C][C] 0.721[/C][C] 0.558[/C][C] 0.279[/C][/ROW]
[ROW][C]77[/C][C] 0.7509[/C][C] 0.4982[/C][C] 0.2491[/C][/ROW]
[ROW][C]78[/C][C] 0.6888[/C][C] 0.6223[/C][C] 0.3112[/C][/ROW]
[ROW][C]79[/C][C] 0.6203[/C][C] 0.7594[/C][C] 0.3797[/C][/ROW]
[ROW][C]80[/C][C] 0.8662[/C][C] 0.2675[/C][C] 0.1338[/C][/ROW]
[ROW][C]81[/C][C] 0.8213[/C][C] 0.3574[/C][C] 0.1787[/C][/ROW]
[ROW][C]82[/C][C] 0.7705[/C][C] 0.4589[/C][C] 0.2295[/C][/ROW]
[ROW][C]83[/C][C] 0.7961[/C][C] 0.4078[/C][C] 0.2039[/C][/ROW]
[ROW][C]84[/C][C] 0.7277[/C][C] 0.5447[/C][C] 0.2723[/C][/ROW]
[ROW][C]85[/C][C] 0.6451[/C][C] 0.7099[/C][C] 0.3549[/C][/ROW]
[ROW][C]86[/C][C] 0.5613[/C][C] 0.8774[/C][C] 0.4387[/C][/ROW]
[ROW][C]87[/C][C] 0.4833[/C][C] 0.9666[/C][C] 0.5167[/C][/ROW]
[ROW][C]88[/C][C] 0.4546[/C][C] 0.9092[/C][C] 0.5454[/C][/ROW]
[ROW][C]89[/C][C] 0.4459[/C][C] 0.8917[/C][C] 0.5541[/C][/ROW]
[ROW][C]90[/C][C] 0.3411[/C][C] 0.6822[/C][C] 0.6589[/C][/ROW]
[ROW][C]91[/C][C] 0.3352[/C][C] 0.6704[/C][C] 0.6648[/C][/ROW]
[ROW][C]92[/C][C] 0.8442[/C][C] 0.3116[/C][C] 0.1558[/C][/ROW]
[ROW][C]93[/C][C] 0.7555[/C][C] 0.4889[/C][C] 0.2445[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5 0.5589 0.8823 0.4411
6 0.3889 0.7777 0.6111
7 0.2645 0.529 0.7355
8 0.2035 0.4069 0.7965
9 0.6968 0.6063 0.3032
10 0.638 0.7241 0.362
11 0.5367 0.9266 0.4633
12 0.4512 0.9024 0.5488
13 0.6686 0.6629 0.3314
14 0.602 0.796 0.398
15 0.5252 0.9495 0.4748
16 0.4446 0.8893 0.5554
17 0.368 0.736 0.632
18 0.4582 0.9163 0.5418
19 0.3827 0.7654 0.6173
20 0.54 0.9199 0.46
21 0.5454 0.9092 0.4546
22 0.5168 0.9665 0.4832
23 0.446 0.8921 0.554
24 0.3798 0.7596 0.6202
25 0.3158 0.6317 0.6842
26 0.2617 0.5235 0.7383
27 0.2255 0.451 0.7745
28 0.2149 0.4298 0.7851
29 0.1951 0.3903 0.8049
30 0.1768 0.3537 0.8232
31 0.2048 0.4096 0.7952
32 0.1873 0.3746 0.8127
33 0.97 0.05998 0.02999
34 0.9747 0.05059 0.0253
35 0.9933 0.01349 0.006745
36 0.9922 0.01565 0.007823
37 0.9884 0.02315 0.01157
38 0.9867 0.02662 0.01331
39 0.9847 0.03054 0.01527
40 0.9799 0.04011 0.02006
41 0.9718 0.05643 0.02821
42 0.9611 0.07788 0.03894
43 0.9565 0.0871 0.04355
44 0.9701 0.05987 0.02993
45 0.9601 0.07971 0.03986
46 0.9463 0.1075 0.05373
47 0.9473 0.1055 0.05274
48 0.9317 0.1365 0.06826
49 0.911 0.1779 0.08896
50 0.8858 0.2284 0.1142
51 0.8698 0.2604 0.1302
52 0.8836 0.2328 0.1164
53 0.8852 0.2296 0.1148
54 0.8537 0.2926 0.1463
55 0.8302 0.3396 0.1698
56 0.8003 0.3995 0.1997
57 0.7558 0.4884 0.2442
58 0.7076 0.5848 0.2924
59 0.6909 0.6181 0.3091
60 0.6359 0.7282 0.3641
61 0.7561 0.4878 0.2439
62 0.7054 0.5892 0.2946
63 0.7674 0.4652 0.2326
64 0.7356 0.5288 0.2644
65 0.6835 0.633 0.3165
66 0.6272 0.7455 0.3728
67 0.7555 0.4891 0.2445
68 0.7229 0.5542 0.2771
69 0.7379 0.5242 0.2621
70 0.7978 0.4043 0.2022
71 0.8268 0.3464 0.1732
72 0.78 0.44 0.22
73 0.7419 0.5161 0.2581
74 0.7943 0.4114 0.2057
75 0.7778 0.4445 0.2222
76 0.721 0.558 0.279
77 0.7509 0.4982 0.2491
78 0.6888 0.6223 0.3112
79 0.6203 0.7594 0.3797
80 0.8662 0.2675 0.1338
81 0.8213 0.3574 0.1787
82 0.7705 0.4589 0.2295
83 0.7961 0.4078 0.2039
84 0.7277 0.5447 0.2723
85 0.6451 0.7099 0.3549
86 0.5613 0.8774 0.4387
87 0.4833 0.9666 0.5167
88 0.4546 0.9092 0.5454
89 0.4459 0.8917 0.5541
90 0.3411 0.6822 0.6589
91 0.3352 0.6704 0.6648
92 0.8442 0.3116 0.1558
93 0.7555 0.4889 0.2445







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level60.0674157NOK
10% type I error level130.146067NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 6 & 0.0674157 & NOK \tabularnewline
10% type I error level & 13 & 0.146067 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]6[/C][C]0.0674157[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]13[/C][C]0.146067[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level60.0674157NOK
10% type I error level130.146067NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.7487, df1 = 2, df2 = 94, p-value = 0.1796



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- ''
par4 <- ''
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')