Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationWed, 07 Dec 2016 20:01:42 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481137341a2kim9gnn7f4l30.htm/, Retrieved Fri, 01 Nov 2024 03:36:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298308, Retrieved Fri, 01 Nov 2024 03:36:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact83
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [N2596] [2016-12-07 19:01:42] [85f5800284aab30c091766186b093bb4] [Current]
Feedback Forum

Post a new message
Dataseries X:
1819.6
1312.4
2584
1479.6
1742
2639.2
1706
1408
1951.6
1690.4
2288.4
2912
1460.8
1009.6
2410
1603.2
2115.2
2330
1690
1358
1806.8
1973.6
1402
1857.6
1974.4
1438
1923.2
1996.8
2238.8
2540.4
1704.4
1856
2214.8
1948
1802
1431.6
2857.6
1784
2770.8
2313.6
3707.6
4322.4
3297.6
2223.6
2136.4
2459.2
1650.4
2921.2
1979.6
1403.2
2374
2876.4
2500
3888
1508.8
1011.2
1590.8
2076.4
3736
2125.6
982.8
2034.8
2260
1726
2270.4
1951.6
2104.4
2972.8
2834.4
4227.6
3392.4
3069.2
3138.8
3570
4800.4
4769.2
5124.8
3476.8
2866.8
2549.2
2728
2448.8
3286.8
2830
3251.2
4188.8
2747.6
2269.2
2493.2
2147.6
2689.2
3557.2
2840
3979.6
2683.2
2852
3012.8
2950.8
3065.2
3942.4
4272
4564
5222.8
5164.4
3883.6
4103.2
5244
8071.6
5441.6
7496
10100.4
9616
5645.6
10490
5582
7579.2
4023.6
8146.4
8534.4
10113.6
8504.4
9782.4
13110
8192.8
8708.8
9528.8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298308&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298308&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298308&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.1148-0.0683-0.0163-0.6971
(p-val)(0.4703 )(0.5547 )(0.8844 )(0 )
Estimates ( 2 )0.1269-0.06350-0.7086
(p-val)(0.3442 )(0.5659 )(NA )(0 )
Estimates ( 3 )0.154800-0.7428
(p-val)(0.2054 )(NA )(NA )(0 )
Estimates ( 4 )000-0.6677
(p-val)(NA )(NA )(NA )(0 )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 \tabularnewline
Estimates ( 1 ) & 0.1148 & -0.0683 & -0.0163 & -0.6971 \tabularnewline
(p-val) & (0.4703 ) & (0.5547 ) & (0.8844 ) & (0 ) \tabularnewline
Estimates ( 2 ) & 0.1269 & -0.0635 & 0 & -0.7086 \tabularnewline
(p-val) & (0.3442 ) & (0.5659 ) & (NA ) & (0 ) \tabularnewline
Estimates ( 3 ) & 0.1548 & 0 & 0 & -0.7428 \tabularnewline
(p-val) & (0.2054 ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 4 ) & 0 & 0 & 0 & -0.6677 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0 ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298308&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.1148[/C][C]-0.0683[/C][C]-0.0163[/C][C]-0.6971[/C][/ROW]
[ROW][C](p-val)[/C][C](0.4703 )[/C][C](0.5547 )[/C][C](0.8844 )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.1269[/C][C]-0.0635[/C][C]0[/C][C]-0.7086[/C][/ROW]
[ROW][C](p-val)[/C][C](0.3442 )[/C][C](0.5659 )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0.1548[/C][C]0[/C][C]0[/C][C]-0.7428[/C][/ROW]
[ROW][C](p-val)[/C][C](0.2054 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.6677[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298308&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298308&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1
Estimates ( 1 )0.1148-0.0683-0.0163-0.6971
(p-val)(0.4703 )(0.5547 )(0.8844 )(0 )
Estimates ( 2 )0.1269-0.06350-0.7086
(p-val)(0.3442 )(0.5659 )(NA )(0 )
Estimates ( 3 )0.154800-0.7428
(p-val)(0.2054 )(NA )(NA )(0 )
Estimates ( 4 )000-0.6677
(p-val)(NA )(NA )(NA )(0 )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
0.0075063668930923
-0.280788438588458
0.513065215865864
-0.296056970486178
0.0362932639189727
0.412730475497576
-0.195942962834264
-0.268477736234799
0.157095336153263
-0.0776490136846
0.267376903065095
0.392508722373886
-0.435625818477395
-0.586124841279234
0.491910547954536
-0.176939170612101
0.208819896771553
0.208921119441518
-0.180929667700859
-0.303394079759038
0.0940462086198769
0.113956440274725
-0.270983785625762
0.133038344779353
0.116240098973128
-0.240109944970642
0.161460527084112
0.112480127420891
0.192128511742859
0.251382791953871
-0.231949952148991
-0.0252968995314948
0.144758319753986
-0.0481937983274859
-0.0938340322112646
-0.287742874885512
0.513079270244356
-0.19701261379693
0.366869029045588
0.02401816745894
0.517334587363149
0.464692706540017
0.0507982114875162
-0.314445617075339
-0.212569037911174
-0.010985124135163
-0.428759742962028
0.314238477216513
-0.244074539779063
-0.465202034651774
0.233550046944657
0.284044647895914
0.0410184741241124
0.493781606429811
-0.648168112887918
-0.735096178614847
-0.0309688234192364
0.173258089812626
0.674835066613517
-0.153632039901733
-0.798219868005473
0.254256233076233
0.181171637448541
-0.151236268889532
0.203540690164713
-0.0425578400700779
0.067191294954065
0.383713535482846
0.183862458455974
0.543752931383461
0.121903366958103
0.0244963855068345
0.0561171928300901
0.166936604186915
0.400204546355395
0.244902570461363
0.254830615648828
-0.209828273527828
-0.288714544425893
-0.302005321556873
-0.138358308584101
-0.221233611747
0.146702124094549
-0.0862292895668197
0.0978613805503867
0.304602032473362
-0.234658242698909
-0.300324532047931
-0.0993225121305219
-0.237563053649042
0.0715340345150359
0.298051602830593
-0.0470842082407437
0.337259280635856
-0.195886643657969
-0.0234742122591065
0.0279691332612542
-0.0085091048562429
0.0349348614323803
0.271737850939422
0.243175083049046
0.234313643445322
0.298642687115949
0.1897089199565
-0.142374066585381
-0.00662710096744945
0.231880501893798
0.56552905357672
-0.0409738868879632
0.350894270655369
0.509261844389243
0.282961282452149
-0.314766728037727
0.468180435339418
-0.379023650524227
0.121986336321976
-0.58996751671846
0.365204966987775
0.208602990316257
0.317519329606807
0.0362686184777541
0.193766297127226
0.415044363174102
-0.207156129354036
-0.0200206102191611
0.0656592902137128

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
0.0075063668930923 \tabularnewline
-0.280788438588458 \tabularnewline
0.513065215865864 \tabularnewline
-0.296056970486178 \tabularnewline
0.0362932639189727 \tabularnewline
0.412730475497576 \tabularnewline
-0.195942962834264 \tabularnewline
-0.268477736234799 \tabularnewline
0.157095336153263 \tabularnewline
-0.0776490136846 \tabularnewline
0.267376903065095 \tabularnewline
0.392508722373886 \tabularnewline
-0.435625818477395 \tabularnewline
-0.586124841279234 \tabularnewline
0.491910547954536 \tabularnewline
-0.176939170612101 \tabularnewline
0.208819896771553 \tabularnewline
0.208921119441518 \tabularnewline
-0.180929667700859 \tabularnewline
-0.303394079759038 \tabularnewline
0.0940462086198769 \tabularnewline
0.113956440274725 \tabularnewline
-0.270983785625762 \tabularnewline
0.133038344779353 \tabularnewline
0.116240098973128 \tabularnewline
-0.240109944970642 \tabularnewline
0.161460527084112 \tabularnewline
0.112480127420891 \tabularnewline
0.192128511742859 \tabularnewline
0.251382791953871 \tabularnewline
-0.231949952148991 \tabularnewline
-0.0252968995314948 \tabularnewline
0.144758319753986 \tabularnewline
-0.0481937983274859 \tabularnewline
-0.0938340322112646 \tabularnewline
-0.287742874885512 \tabularnewline
0.513079270244356 \tabularnewline
-0.19701261379693 \tabularnewline
0.366869029045588 \tabularnewline
0.02401816745894 \tabularnewline
0.517334587363149 \tabularnewline
0.464692706540017 \tabularnewline
0.0507982114875162 \tabularnewline
-0.314445617075339 \tabularnewline
-0.212569037911174 \tabularnewline
-0.010985124135163 \tabularnewline
-0.428759742962028 \tabularnewline
0.314238477216513 \tabularnewline
-0.244074539779063 \tabularnewline
-0.465202034651774 \tabularnewline
0.233550046944657 \tabularnewline
0.284044647895914 \tabularnewline
0.0410184741241124 \tabularnewline
0.493781606429811 \tabularnewline
-0.648168112887918 \tabularnewline
-0.735096178614847 \tabularnewline
-0.0309688234192364 \tabularnewline
0.173258089812626 \tabularnewline
0.674835066613517 \tabularnewline
-0.153632039901733 \tabularnewline
-0.798219868005473 \tabularnewline
0.254256233076233 \tabularnewline
0.181171637448541 \tabularnewline
-0.151236268889532 \tabularnewline
0.203540690164713 \tabularnewline
-0.0425578400700779 \tabularnewline
0.067191294954065 \tabularnewline
0.383713535482846 \tabularnewline
0.183862458455974 \tabularnewline
0.543752931383461 \tabularnewline
0.121903366958103 \tabularnewline
0.0244963855068345 \tabularnewline
0.0561171928300901 \tabularnewline
0.166936604186915 \tabularnewline
0.400204546355395 \tabularnewline
0.244902570461363 \tabularnewline
0.254830615648828 \tabularnewline
-0.209828273527828 \tabularnewline
-0.288714544425893 \tabularnewline
-0.302005321556873 \tabularnewline
-0.138358308584101 \tabularnewline
-0.221233611747 \tabularnewline
0.146702124094549 \tabularnewline
-0.0862292895668197 \tabularnewline
0.0978613805503867 \tabularnewline
0.304602032473362 \tabularnewline
-0.234658242698909 \tabularnewline
-0.300324532047931 \tabularnewline
-0.0993225121305219 \tabularnewline
-0.237563053649042 \tabularnewline
0.0715340345150359 \tabularnewline
0.298051602830593 \tabularnewline
-0.0470842082407437 \tabularnewline
0.337259280635856 \tabularnewline
-0.195886643657969 \tabularnewline
-0.0234742122591065 \tabularnewline
0.0279691332612542 \tabularnewline
-0.0085091048562429 \tabularnewline
0.0349348614323803 \tabularnewline
0.271737850939422 \tabularnewline
0.243175083049046 \tabularnewline
0.234313643445322 \tabularnewline
0.298642687115949 \tabularnewline
0.1897089199565 \tabularnewline
-0.142374066585381 \tabularnewline
-0.00662710096744945 \tabularnewline
0.231880501893798 \tabularnewline
0.56552905357672 \tabularnewline
-0.0409738868879632 \tabularnewline
0.350894270655369 \tabularnewline
0.509261844389243 \tabularnewline
0.282961282452149 \tabularnewline
-0.314766728037727 \tabularnewline
0.468180435339418 \tabularnewline
-0.379023650524227 \tabularnewline
0.121986336321976 \tabularnewline
-0.58996751671846 \tabularnewline
0.365204966987775 \tabularnewline
0.208602990316257 \tabularnewline
0.317519329606807 \tabularnewline
0.0362686184777541 \tabularnewline
0.193766297127226 \tabularnewline
0.415044363174102 \tabularnewline
-0.207156129354036 \tabularnewline
-0.0200206102191611 \tabularnewline
0.0656592902137128 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298308&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]0.0075063668930923[/C][/ROW]
[ROW][C]-0.280788438588458[/C][/ROW]
[ROW][C]0.513065215865864[/C][/ROW]
[ROW][C]-0.296056970486178[/C][/ROW]
[ROW][C]0.0362932639189727[/C][/ROW]
[ROW][C]0.412730475497576[/C][/ROW]
[ROW][C]-0.195942962834264[/C][/ROW]
[ROW][C]-0.268477736234799[/C][/ROW]
[ROW][C]0.157095336153263[/C][/ROW]
[ROW][C]-0.0776490136846[/C][/ROW]
[ROW][C]0.267376903065095[/C][/ROW]
[ROW][C]0.392508722373886[/C][/ROW]
[ROW][C]-0.435625818477395[/C][/ROW]
[ROW][C]-0.586124841279234[/C][/ROW]
[ROW][C]0.491910547954536[/C][/ROW]
[ROW][C]-0.176939170612101[/C][/ROW]
[ROW][C]0.208819896771553[/C][/ROW]
[ROW][C]0.208921119441518[/C][/ROW]
[ROW][C]-0.180929667700859[/C][/ROW]
[ROW][C]-0.303394079759038[/C][/ROW]
[ROW][C]0.0940462086198769[/C][/ROW]
[ROW][C]0.113956440274725[/C][/ROW]
[ROW][C]-0.270983785625762[/C][/ROW]
[ROW][C]0.133038344779353[/C][/ROW]
[ROW][C]0.116240098973128[/C][/ROW]
[ROW][C]-0.240109944970642[/C][/ROW]
[ROW][C]0.161460527084112[/C][/ROW]
[ROW][C]0.112480127420891[/C][/ROW]
[ROW][C]0.192128511742859[/C][/ROW]
[ROW][C]0.251382791953871[/C][/ROW]
[ROW][C]-0.231949952148991[/C][/ROW]
[ROW][C]-0.0252968995314948[/C][/ROW]
[ROW][C]0.144758319753986[/C][/ROW]
[ROW][C]-0.0481937983274859[/C][/ROW]
[ROW][C]-0.0938340322112646[/C][/ROW]
[ROW][C]-0.287742874885512[/C][/ROW]
[ROW][C]0.513079270244356[/C][/ROW]
[ROW][C]-0.19701261379693[/C][/ROW]
[ROW][C]0.366869029045588[/C][/ROW]
[ROW][C]0.02401816745894[/C][/ROW]
[ROW][C]0.517334587363149[/C][/ROW]
[ROW][C]0.464692706540017[/C][/ROW]
[ROW][C]0.0507982114875162[/C][/ROW]
[ROW][C]-0.314445617075339[/C][/ROW]
[ROW][C]-0.212569037911174[/C][/ROW]
[ROW][C]-0.010985124135163[/C][/ROW]
[ROW][C]-0.428759742962028[/C][/ROW]
[ROW][C]0.314238477216513[/C][/ROW]
[ROW][C]-0.244074539779063[/C][/ROW]
[ROW][C]-0.465202034651774[/C][/ROW]
[ROW][C]0.233550046944657[/C][/ROW]
[ROW][C]0.284044647895914[/C][/ROW]
[ROW][C]0.0410184741241124[/C][/ROW]
[ROW][C]0.493781606429811[/C][/ROW]
[ROW][C]-0.648168112887918[/C][/ROW]
[ROW][C]-0.735096178614847[/C][/ROW]
[ROW][C]-0.0309688234192364[/C][/ROW]
[ROW][C]0.173258089812626[/C][/ROW]
[ROW][C]0.674835066613517[/C][/ROW]
[ROW][C]-0.153632039901733[/C][/ROW]
[ROW][C]-0.798219868005473[/C][/ROW]
[ROW][C]0.254256233076233[/C][/ROW]
[ROW][C]0.181171637448541[/C][/ROW]
[ROW][C]-0.151236268889532[/C][/ROW]
[ROW][C]0.203540690164713[/C][/ROW]
[ROW][C]-0.0425578400700779[/C][/ROW]
[ROW][C]0.067191294954065[/C][/ROW]
[ROW][C]0.383713535482846[/C][/ROW]
[ROW][C]0.183862458455974[/C][/ROW]
[ROW][C]0.543752931383461[/C][/ROW]
[ROW][C]0.121903366958103[/C][/ROW]
[ROW][C]0.0244963855068345[/C][/ROW]
[ROW][C]0.0561171928300901[/C][/ROW]
[ROW][C]0.166936604186915[/C][/ROW]
[ROW][C]0.400204546355395[/C][/ROW]
[ROW][C]0.244902570461363[/C][/ROW]
[ROW][C]0.254830615648828[/C][/ROW]
[ROW][C]-0.209828273527828[/C][/ROW]
[ROW][C]-0.288714544425893[/C][/ROW]
[ROW][C]-0.302005321556873[/C][/ROW]
[ROW][C]-0.138358308584101[/C][/ROW]
[ROW][C]-0.221233611747[/C][/ROW]
[ROW][C]0.146702124094549[/C][/ROW]
[ROW][C]-0.0862292895668197[/C][/ROW]
[ROW][C]0.0978613805503867[/C][/ROW]
[ROW][C]0.304602032473362[/C][/ROW]
[ROW][C]-0.234658242698909[/C][/ROW]
[ROW][C]-0.300324532047931[/C][/ROW]
[ROW][C]-0.0993225121305219[/C][/ROW]
[ROW][C]-0.237563053649042[/C][/ROW]
[ROW][C]0.0715340345150359[/C][/ROW]
[ROW][C]0.298051602830593[/C][/ROW]
[ROW][C]-0.0470842082407437[/C][/ROW]
[ROW][C]0.337259280635856[/C][/ROW]
[ROW][C]-0.195886643657969[/C][/ROW]
[ROW][C]-0.0234742122591065[/C][/ROW]
[ROW][C]0.0279691332612542[/C][/ROW]
[ROW][C]-0.0085091048562429[/C][/ROW]
[ROW][C]0.0349348614323803[/C][/ROW]
[ROW][C]0.271737850939422[/C][/ROW]
[ROW][C]0.243175083049046[/C][/ROW]
[ROW][C]0.234313643445322[/C][/ROW]
[ROW][C]0.298642687115949[/C][/ROW]
[ROW][C]0.1897089199565[/C][/ROW]
[ROW][C]-0.142374066585381[/C][/ROW]
[ROW][C]-0.00662710096744945[/C][/ROW]
[ROW][C]0.231880501893798[/C][/ROW]
[ROW][C]0.56552905357672[/C][/ROW]
[ROW][C]-0.0409738868879632[/C][/ROW]
[ROW][C]0.350894270655369[/C][/ROW]
[ROW][C]0.509261844389243[/C][/ROW]
[ROW][C]0.282961282452149[/C][/ROW]
[ROW][C]-0.314766728037727[/C][/ROW]
[ROW][C]0.468180435339418[/C][/ROW]
[ROW][C]-0.379023650524227[/C][/ROW]
[ROW][C]0.121986336321976[/C][/ROW]
[ROW][C]-0.58996751671846[/C][/ROW]
[ROW][C]0.365204966987775[/C][/ROW]
[ROW][C]0.208602990316257[/C][/ROW]
[ROW][C]0.317519329606807[/C][/ROW]
[ROW][C]0.0362686184777541[/C][/ROW]
[ROW][C]0.193766297127226[/C][/ROW]
[ROW][C]0.415044363174102[/C][/ROW]
[ROW][C]-0.207156129354036[/C][/ROW]
[ROW][C]-0.0200206102191611[/C][/ROW]
[ROW][C]0.0656592902137128[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298308&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298308&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
0.0075063668930923
-0.280788438588458
0.513065215865864
-0.296056970486178
0.0362932639189727
0.412730475497576
-0.195942962834264
-0.268477736234799
0.157095336153263
-0.0776490136846
0.267376903065095
0.392508722373886
-0.435625818477395
-0.586124841279234
0.491910547954536
-0.176939170612101
0.208819896771553
0.208921119441518
-0.180929667700859
-0.303394079759038
0.0940462086198769
0.113956440274725
-0.270983785625762
0.133038344779353
0.116240098973128
-0.240109944970642
0.161460527084112
0.112480127420891
0.192128511742859
0.251382791953871
-0.231949952148991
-0.0252968995314948
0.144758319753986
-0.0481937983274859
-0.0938340322112646
-0.287742874885512
0.513079270244356
-0.19701261379693
0.366869029045588
0.02401816745894
0.517334587363149
0.464692706540017
0.0507982114875162
-0.314445617075339
-0.212569037911174
-0.010985124135163
-0.428759742962028
0.314238477216513
-0.244074539779063
-0.465202034651774
0.233550046944657
0.284044647895914
0.0410184741241124
0.493781606429811
-0.648168112887918
-0.735096178614847
-0.0309688234192364
0.173258089812626
0.674835066613517
-0.153632039901733
-0.798219868005473
0.254256233076233
0.181171637448541
-0.151236268889532
0.203540690164713
-0.0425578400700779
0.067191294954065
0.383713535482846
0.183862458455974
0.543752931383461
0.121903366958103
0.0244963855068345
0.0561171928300901
0.166936604186915
0.400204546355395
0.244902570461363
0.254830615648828
-0.209828273527828
-0.288714544425893
-0.302005321556873
-0.138358308584101
-0.221233611747
0.146702124094549
-0.0862292895668197
0.0978613805503867
0.304602032473362
-0.234658242698909
-0.300324532047931
-0.0993225121305219
-0.237563053649042
0.0715340345150359
0.298051602830593
-0.0470842082407437
0.337259280635856
-0.195886643657969
-0.0234742122591065
0.0279691332612542
-0.0085091048562429
0.0349348614323803
0.271737850939422
0.243175083049046
0.234313643445322
0.298642687115949
0.1897089199565
-0.142374066585381
-0.00662710096744945
0.231880501893798
0.56552905357672
-0.0409738868879632
0.350894270655369
0.509261844389243
0.282961282452149
-0.314766728037727
0.468180435339418
-0.379023650524227
0.121986336321976
-0.58996751671846
0.365204966987775
0.208602990316257
0.317519329606807
0.0362686184777541
0.193766297127226
0.415044363174102
-0.207156129354036
-0.0200206102191611
0.0656592902137128



Parameters (Session):
par1 = -1.0 ; par2 = 1 ; par3 = 0 ; par4 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 0.0 ; par3 = 1 ; par4 = 0 ; par5 = 1 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 0 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')