Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationWed, 07 Dec 2016 15:46:28 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t148112215079hletylxh4eul0.htm/, Retrieved Fri, 01 Nov 2024 03:44:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298166, Retrieved Fri, 01 Nov 2024 03:44:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact97
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [Correlation Matri...] [2016-12-07 14:46:28] [f9bc84b6ee189f10a7b2ad2152f37fb9] [Current]
Feedback Forum

Post a new message
Dataseries X:
2	3	3	3	13
1	2	2	4	16
2	3	3	4	17
3	NA	2	3	NA
3	NA	3	3	NA
2	3	3	4	16
3	3	3	3	NA
3	NA	3	3	NA
3	NA	3	3	NA
2	3	3	3	17
2	3	3	4	17
3	3	3	3	15
2	4	4	5	16
2	4	3	4	14
2	3	3	4	16
3	3	2	3	17
2	NA	3	5	NA
NA	NA	NA	NA	NA
3	1	3	2	NA
2	NA	3	2	NA
2	3	3	3	16
3	NA	3	3	NA
2	4	3	3	16
3	NA	3	3	NA
2	NA	3	4	NA
2	NA	2	4	NA
2	3	3	4	16
2	3	3	4	15
3	5	4	2	16
2	NA	3	4	16
3	3	3	3	13
2	2	2	3	15
2	4	3	4	17
2	NA	NA	2	NA
2	4	3	4	13
2	3	3	4	17
3	NA	3	3	NA
2	4	3	3	14
2	2	4	4	14
3	3	3	3	18
2	NA	2	4	NA
3	3	3	3	17
2	3	3	3	13
3	3	3	4	16
2	4	3	4	15
NA	NA	2	3	15
3	NA	3	3	NA
3	4	3	3	15
2	3	2	3	13
2	NA	1	1	NA
3	4	3	3	17
2	NA	3	4	NA
2	NA	3	4	NA
1	1	1	2	11
2	NA	3	4	14
2	1	3	4	13
3	NA	3	3	NA
2	5	3	5	17
3	4	3	3	16
4	NA	3	2	NA
3	3	3	3	17
2	5	2	4	16
3	4	3	3	16
2	3	3	3	16
2	NA	3	4	15
2	NA	2	3	12
2	3	3	4	17
2	4	3	3	14
2	3	3	5	14
2	5	3	4	16
2	NA	2	4	NA
2	NA	3	4	NA
2	NA	2	2	NA
NA	NA	3	3	NA
1	NA	3	5	NA
2	3	3	4	15
2	3	3	4	16
2	2	2	4	14
2	3	3	4	15
3	3	3	3	17
3	NA	NA	NA	NA
2	NA	3	4	10
2	3	3	4	NA
2	4	3	4	17
3	NA	3	3	NA
2	5	3	4	20
3	1	3	3	17
3	3	3	3	18
2	NA	3	3	NA
2	4	3	4	17
3	2	3	3	14
4	NA	3	3	NA
3	3	3	3	17
3	NA	3	3	NA
3	3	3	3	17
2	4	3	4	NA
3	3	3	3	16
2	2	2	3	18
5	5	NA	NA	18
3	3	3	3	16
4	NA	3	3	NA
2	4	4	4	NA
2	NA	3	4	15
2	2	3	4	13
2	NA	3	4	NA
2	NA	3	4	NA
3	NA	NA	NA	NA
2	NA	3	4	NA
2	NA	3	4	NA
3	3	3	3	16
3	NA	3	3	NA
3	NA	3	3	NA
2	NA	3	3	NA
1	3	4	4	12
2	NA	3	3	NA
2	2	2	3	16
2	4	3	4	16
2	NA	3	3	NA
3	1	3	3	16
2	5	3	4	14
2	2	3	3	15
3	3	3	3	14
3	NA	3	3	NA
2	3	3	3	15
3	NA	3	NA	NA
3	4	3	4	15
4	3	3	3	16
2	3	3	4	NA
2	NA	3	4	NA
3	NA	3	3	NA
2	2	3	3	11
2	NA	3	4	NA
3	3	3	3	18
2	NA	2	4	NA
2	3	3	4	11
NA	NA	3	NA	NA
2	4	4	5	18
NA	NA	NA	NA	NA
2	NA	2	4	15
1	5	2	4	19
3	3	3	3	17
2	3	2	3	NA
3	3	3	3	14
2	3	3	4	NA
2	NA	3	4	13
2	4	3	3	17
2	3	3	3	14
2	5	3	3	19
2	NA	2	3	14
2	NA	3	3	NA
2	NA	3	4	NA
2	4	3	4	16
3	2	3	3	16
2	3	3	2	15
2	3	2	2	12
3	NA	3	3	NA
3	3	3	3	17
2	NA	NA	4	NA
4	NA	3	3	NA
2	4	3	4	18
2	3	3	2	15
2	4	3	4	18
4	NA	3	3	15
3	NA	3	3	NA
3	NA	3	3	NA
2	NA	2	3	NA
2	4	3	3	16
2	NA	3	3	NA
3	2	3	4	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time0 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298166&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]0 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298166&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298166&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=kendall)
GW1GW2GW3GW4TVDCSum
GW11-0.1050.172-0.3950.184
GW2-0.10510.2180.2270.231
GW30.1720.21810.1850.03
GW4-0.3950.2270.18510.07
TVDCSum0.1840.2310.030.071

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & GW1 & GW2 & GW3 & GW4 & TVDCSum \tabularnewline
GW1 & 1 & -0.105 & 0.172 & -0.395 & 0.184 \tabularnewline
GW2 & -0.105 & 1 & 0.218 & 0.227 & 0.231 \tabularnewline
GW3 & 0.172 & 0.218 & 1 & 0.185 & 0.03 \tabularnewline
GW4 & -0.395 & 0.227 & 0.185 & 1 & 0.07 \tabularnewline
TVDCSum & 0.184 & 0.231 & 0.03 & 0.07 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298166&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]GW1[/C][C]GW2[/C][C]GW3[/C][C]GW4[/C][C]TVDCSum[/C][/ROW]
[ROW][C]GW1[/C][C]1[/C][C]-0.105[/C][C]0.172[/C][C]-0.395[/C][C]0.184[/C][/ROW]
[ROW][C]GW2[/C][C]-0.105[/C][C]1[/C][C]0.218[/C][C]0.227[/C][C]0.231[/C][/ROW]
[ROW][C]GW3[/C][C]0.172[/C][C]0.218[/C][C]1[/C][C]0.185[/C][C]0.03[/C][/ROW]
[ROW][C]GW4[/C][C]-0.395[/C][C]0.227[/C][C]0.185[/C][C]1[/C][C]0.07[/C][/ROW]
[ROW][C]TVDCSum[/C][C]0.184[/C][C]0.231[/C][C]0.03[/C][C]0.07[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298166&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298166&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
GW1GW2GW3GW4TVDCSum
GW11-0.1050.172-0.3950.184
GW2-0.10510.2180.2270.231
GW30.1720.21810.1850.03
GW4-0.3950.2270.18510.07
TVDCSum0.1840.2310.030.071







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
GW1;GW2-0.0945-0.113-0.1053
p-value(0.3728)(0.2863)(0.2696)
GW1;GW30.22130.17910.1724
p-value(0.035)(0.0894)(0.087)
GW1;GW4-0.3488-0.419-0.3953
p-value(7e-04)(0)(1e-04)
GW1;TVDCSum0.21970.21030.1839
p-value(0.0364)(0.0454)(0.0428)
GW2;GW30.24660.23510.2183
p-value(0.0184)(0.0249)(0.0223)
GW2;GW40.25410.25380.2272
p-value(0.0151)(0.0152)(0.0155)
GW2;TVDCSum0.33990.2780.2311
p-value(0.001)(0.0076)(0.0073)
GW3;GW40.25670.1940.1848
p-value(0.014)(0.0654)(0.0624)
GW3;TVDCSum0.10.03460.0298
p-value(0.3455)(0.7447)(0.7428)
GW4;TVDCSum0.13360.08270.07
p-value(0.2068)(0.4358)(0.4334)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
GW1;GW2 & -0.0945 & -0.113 & -0.1053 \tabularnewline
p-value & (0.3728) & (0.2863) & (0.2696) \tabularnewline
GW1;GW3 & 0.2213 & 0.1791 & 0.1724 \tabularnewline
p-value & (0.035) & (0.0894) & (0.087) \tabularnewline
GW1;GW4 & -0.3488 & -0.419 & -0.3953 \tabularnewline
p-value & (7e-04) & (0) & (1e-04) \tabularnewline
GW1;TVDCSum & 0.2197 & 0.2103 & 0.1839 \tabularnewline
p-value & (0.0364) & (0.0454) & (0.0428) \tabularnewline
GW2;GW3 & 0.2466 & 0.2351 & 0.2183 \tabularnewline
p-value & (0.0184) & (0.0249) & (0.0223) \tabularnewline
GW2;GW4 & 0.2541 & 0.2538 & 0.2272 \tabularnewline
p-value & (0.0151) & (0.0152) & (0.0155) \tabularnewline
GW2;TVDCSum & 0.3399 & 0.278 & 0.2311 \tabularnewline
p-value & (0.001) & (0.0076) & (0.0073) \tabularnewline
GW3;GW4 & 0.2567 & 0.194 & 0.1848 \tabularnewline
p-value & (0.014) & (0.0654) & (0.0624) \tabularnewline
GW3;TVDCSum & 0.1 & 0.0346 & 0.0298 \tabularnewline
p-value & (0.3455) & (0.7447) & (0.7428) \tabularnewline
GW4;TVDCSum & 0.1336 & 0.0827 & 0.07 \tabularnewline
p-value & (0.2068) & (0.4358) & (0.4334) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298166&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]GW1;GW2[/C][C]-0.0945[/C][C]-0.113[/C][C]-0.1053[/C][/ROW]
[ROW][C]p-value[/C][C](0.3728)[/C][C](0.2863)[/C][C](0.2696)[/C][/ROW]
[ROW][C]GW1;GW3[/C][C]0.2213[/C][C]0.1791[/C][C]0.1724[/C][/ROW]
[ROW][C]p-value[/C][C](0.035)[/C][C](0.0894)[/C][C](0.087)[/C][/ROW]
[ROW][C]GW1;GW4[/C][C]-0.3488[/C][C]-0.419[/C][C]-0.3953[/C][/ROW]
[ROW][C]p-value[/C][C](7e-04)[/C][C](0)[/C][C](1e-04)[/C][/ROW]
[ROW][C]GW1;TVDCSum[/C][C]0.2197[/C][C]0.2103[/C][C]0.1839[/C][/ROW]
[ROW][C]p-value[/C][C](0.0364)[/C][C](0.0454)[/C][C](0.0428)[/C][/ROW]
[ROW][C]GW2;GW3[/C][C]0.2466[/C][C]0.2351[/C][C]0.2183[/C][/ROW]
[ROW][C]p-value[/C][C](0.0184)[/C][C](0.0249)[/C][C](0.0223)[/C][/ROW]
[ROW][C]GW2;GW4[/C][C]0.2541[/C][C]0.2538[/C][C]0.2272[/C][/ROW]
[ROW][C]p-value[/C][C](0.0151)[/C][C](0.0152)[/C][C](0.0155)[/C][/ROW]
[ROW][C]GW2;TVDCSum[/C][C]0.3399[/C][C]0.278[/C][C]0.2311[/C][/ROW]
[ROW][C]p-value[/C][C](0.001)[/C][C](0.0076)[/C][C](0.0073)[/C][/ROW]
[ROW][C]GW3;GW4[/C][C]0.2567[/C][C]0.194[/C][C]0.1848[/C][/ROW]
[ROW][C]p-value[/C][C](0.014)[/C][C](0.0654)[/C][C](0.0624)[/C][/ROW]
[ROW][C]GW3;TVDCSum[/C][C]0.1[/C][C]0.0346[/C][C]0.0298[/C][/ROW]
[ROW][C]p-value[/C][C](0.3455)[/C][C](0.7447)[/C][C](0.7428)[/C][/ROW]
[ROW][C]GW4;TVDCSum[/C][C]0.1336[/C][C]0.0827[/C][C]0.07[/C][/ROW]
[ROW][C]p-value[/C][C](0.2068)[/C][C](0.4358)[/C][C](0.4334)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298166&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298166&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
GW1;GW2-0.0945-0.113-0.1053
p-value(0.3728)(0.2863)(0.2696)
GW1;GW30.22130.17910.1724
p-value(0.035)(0.0894)(0.087)
GW1;GW4-0.3488-0.419-0.3953
p-value(7e-04)(0)(1e-04)
GW1;TVDCSum0.21970.21030.1839
p-value(0.0364)(0.0454)(0.0428)
GW2;GW30.24660.23510.2183
p-value(0.0184)(0.0249)(0.0223)
GW2;GW40.25410.25380.2272
p-value(0.0151)(0.0152)(0.0155)
GW2;TVDCSum0.33990.2780.2311
p-value(0.001)(0.0076)(0.0073)
GW3;GW40.25670.1940.1848
p-value(0.014)(0.0654)(0.0624)
GW3;TVDCSum0.10.03460.0298
p-value(0.3455)(0.7447)(0.7428)
GW4;TVDCSum0.13360.08270.07
p-value(0.2068)(0.4358)(0.4334)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.20.20.2
0.020.50.30.3
0.030.50.40.4
0.040.70.40.4
0.050.70.50.5
0.060.70.50.5
0.070.70.60.6
0.080.70.60.6
0.090.70.70.7
0.10.70.70.7

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.2 & 0.2 & 0.2 \tabularnewline
0.02 & 0.5 & 0.3 & 0.3 \tabularnewline
0.03 & 0.5 & 0.4 & 0.4 \tabularnewline
0.04 & 0.7 & 0.4 & 0.4 \tabularnewline
0.05 & 0.7 & 0.5 & 0.5 \tabularnewline
0.06 & 0.7 & 0.5 & 0.5 \tabularnewline
0.07 & 0.7 & 0.6 & 0.6 \tabularnewline
0.08 & 0.7 & 0.6 & 0.6 \tabularnewline
0.09 & 0.7 & 0.7 & 0.7 \tabularnewline
0.1 & 0.7 & 0.7 & 0.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298166&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.2[/C][C]0.2[/C][C]0.2[/C][/ROW]
[ROW][C]0.02[/C][C]0.5[/C][C]0.3[/C][C]0.3[/C][/ROW]
[ROW][C]0.03[/C][C]0.5[/C][C]0.4[/C][C]0.4[/C][/ROW]
[ROW][C]0.04[/C][C]0.7[/C][C]0.4[/C][C]0.4[/C][/ROW]
[ROW][C]0.05[/C][C]0.7[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.06[/C][C]0.7[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.07[/C][C]0.7[/C][C]0.6[/C][C]0.6[/C][/ROW]
[ROW][C]0.08[/C][C]0.7[/C][C]0.6[/C][C]0.6[/C][/ROW]
[ROW][C]0.09[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[ROW][C]0.1[/C][C]0.7[/C][C]0.7[/C][C]0.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298166&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298166&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.20.20.2
0.020.50.30.3
0.030.50.40.4
0.040.70.40.4
0.050.70.50.5
0.060.70.50.5
0.070.70.60.6
0.080.70.60.6
0.090.70.70.7
0.10.70.70.7



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')