Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 07 Dec 2016 11:19:07 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481105995fgaaev3hqgynwya.htm/, Retrieved Fri, 01 Nov 2024 03:40:44 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297965, Retrieved Fri, 01 Nov 2024 03:40:44 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact130
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [Decomposition by ...] [2016-12-07 10:19:07] [6b2845a830bced35782aaf33b6e68e42] [Current]
Feedback Forum

Post a new message
Dataseries X:
2620
2940
3080
3120
2420
2930
2780
2890
3000
3380
3460
2810
3530
3590
3840
3520
2820
3310
2870
3340
3660
3650
3670
3050
3770
3480
3780
2750
3600
3550
2750
3480
3870
3640
3340
3030
3850
3400
3450
3000
3190
4100
2960
3640
4210
4040
3470
3380
4490
3670
3650
3520
3470
3570
3440
3580
4120
4370
3250
3260
3610
3600
3620
3020
3240
3360
3450
3640
3690
3870
3810
3430
3910
3800
4140
3350
3360
3310
2850
3630
4340
4260
3690
2990
3620
3590
3940
2970
3470
4310
3060
3480
4190
3470
2650
2620
3620
3090
3620
2820
3060
3600
2940
3550
4590
3120
2800
3380
3490
2940
3500
2980
3040
4160
3110
3890




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297965&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297965&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297965&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11610117
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1161 & 0 & 117 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297965&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1161[/C][C]0[/C][C]117[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297965&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297965&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11610117
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
126202291.51594122244249.532963229462698.9510955481-328.484058777555
229403137.89632294747-3.213074806164922745.3167518587197.896322947467
330803131.27674289984237.0408489308552791.682408169351.2767428998436
431203727.39797040241-328.7518629674472841.35389256504607.397970402408
524202224.51875422464-275.5441311854222891.02537696078-195.481245775356
629302745.55229285381170.2554269734362944.19228017275-184.447707146185
727802998.58542562277-435.9446090074882997.35918338472218.585425622769
828902682.4582786755248.45925993996653049.08246138452-207.541721324482
930002386.97840021265512.2158604030443100.80573938431-613.021599787355
1033803314.83212341717300.0343080720323145.13356851079-65.167876582826
1134603841.57517779744-111.0365754347133189.46139763728381.575177797436
1228102750.67406166412-363.0483729705023232.37431130638-59.3259383358782
1335303535.17981179506249.532963229463275.287224975485.17981179505614
1435903878.17369683448-3.213074806164923305.03937797168288.173696834481
1538404108.16762010126237.0408489308553334.79153096788268.16762010126
1635204013.3336925153-328.7518629674473355.41817045215493.333692515296
1728202539.499321249-275.5441311854223376.04480993642-280.500678750996
1833103066.32558039197170.2554269734363383.41899263459-243.67441960803
1928702785.15143367472-435.9446090074883390.79317533277-84.84856632528
2033403239.9531467191648.45925993996653391.58759334088-100.046853280844
2136603415.40212824797512.2158604030443392.38201134899-244.59787175203
2236503602.6453560501300.0343080720323397.32033587787-47.3546439499028
2336704048.77791502796-111.0365754347133402.25866040675378.777915027958
2430503045.71241943432-363.0483729705023417.33595353619-4.28758056568404
2537703858.05379010492249.532963229463432.4132466656288.0537901049224
2634803524.75193091506-3.213074806164923438.4611438911144.751930915058
2737803878.45010995255237.0408489308553444.509041116698.4501099525487
2827502390.05209441196-328.7518629674473438.69976855549-359.947905588039
2936004042.65363519105-275.5441311854223432.89049599438442.653635191045
3035503504.37295293505170.2554269734363425.37162009151-45.6270470649497
3127502518.09186481884-435.9446090074883417.85274418865-231.908135181161
3234803499.2067839792248.45925993996653412.3339560808119.2067839792239
3338703820.96897162399512.2158604030443406.81516797297-49.0310283760132
3436403574.87187944391300.0343080720323405.09381248406-65.1281205560927
3533403387.66411843956-111.0365754347133403.3724569951547.6641184395621
3630303009.13432768573-363.0483729705023413.91404528477-20.8656723142703
3738504026.01140319615249.532963229463424.45563357439176.011403196146
3834003356.26655999346-3.213074806164923446.9465148127-43.7334400065379
3934503193.52175501813237.0408489308553469.43739605101-256.478244981867
4030002835.33123861993-328.7518629674473493.42062434751-164.668761380066
4131903138.14027854141-275.5441311854223517.40385264402-51.859721458593
4241004479.72808809899170.2554269734363550.01648492757379.728088098995
4329602773.31549179637-435.9446090074883582.62911721112-186.684508203634
4436403615.3504434174348.45925993996653616.19029664261-24.6495565825726
4542104258.03266352287512.2158604030443649.7514760740948.0326635228671
4640404107.17666094923300.0343080720323672.7890309787467.1766609492324
4734703355.20998955133-111.0365754347133695.82658588338-114.790010448668
4833803420.87858440236-363.0483729705023702.1697885681440.8785844023605
4944905021.95404551764249.532963229463708.5129912529531.954045517638
5036703632.67691235912-3.213074806164923710.53616244705-37.3230876408838
5136503350.39981742795237.0408489308553712.55933364119-299.60018257205
5235203661.80396632682-328.7518629674473706.94789664063141.803966326815
5334703514.20767154535-275.5441311854223701.3364596400744.2076715453527
5435703286.18879420233170.2554269734363683.55577882424-283.811205797673
5534403650.16951099908-435.9446090074883665.7750980084210.169510999085
5635803468.8322271654148.45925993996653642.70851289462-111.16777283459
5741204108.14221181611512.2158604030443619.64192778084-11.8577881838869
5843704841.79174752775300.0343080720323598.17394440022471.791747527752
5932503034.33061441512-111.0365754347133576.70596101959-215.669385584875
6032603325.04544995579-363.0483729705023558.0029230147265.0454499557854
6136103431.1671517607249.532963229463539.29988500984-178.832848239304
6236003680.05456593985-3.213074806164923523.1585088663180.0545659398531
6336203495.94201834637237.0408489308553507.01713272278-124.057981653635
6430202866.07126969471-328.7518629674473502.68059327274-153.928730305292
6532403257.20007736272-275.5441311854223498.344053822717.2000773627224
6633603034.608314507170.2554269734363515.13625851956-325.391685492998
6734503804.01614579107-435.9446090074883531.92846321642354.016145791066
6836403669.2295794898548.45925993996653562.3111605701829.2295794898509
6936903275.09028167301512.2158604030443592.69385792394-414.909718326986
7038703823.01750950048300.0343080720323616.94818242749-46.9824904995203
7138104089.83406850368-111.0365754347133641.20250693103279.83406850368
7234303579.76190112187-363.0483729705023643.28647184863149.76190112187
7339103925.09660000431249.532963229463645.3704367662315.096600004309
7438003960.69861801415-3.213074806164923642.51445679202160.698618014149
7541404403.30067425134237.0408489308553639.6584768178263.300674251343
7633503386.51202435619-328.7518629674473642.2398386112636.5120243561892
7733603350.72293078071-275.5441311854223644.82120040472-9.27706921929257
7833102818.05318233055170.2554269734363631.69139069601-491.946817669451
7928502517.38302802017-435.9446090074883618.56158098731-332.616971979825
8036303609.3144673045948.45925993996653602.22627275544-20.6855326954101
8143404581.89317507338512.2158604030443585.89096452357241.893175073383
8242604633.92536981503300.0343080720323586.04032211294373.925369815027
8336903904.8468957324-111.0365754347133586.18967970231214.846895732405
8429902739.9617609703-363.0483729705023603.0866120002-250.038239029696
8536203370.48349247245249.532963229463619.98354429809-249.516507527548
8635903565.13592068896-3.213074806164923618.07715411721-24.8640793110403
8739404026.78838713282237.0408489308553616.1707639363286.7883871328218
8829702686.36125256857-328.7518629674473582.39061039887-283.638747431427
8934703666.933674324-275.5441311854223548.61045686142196.933674323998
9043104940.58515589294170.2554269734363509.15941713362630.585155892945
9130603086.23623160168-435.9446090074883469.7083774058126.2362316016752
9234803479.5982650445648.45925993996653431.94247501547-0.401734955440588
9341904473.60756697182512.2158604030443394.17657262513283.607566971822
9434703283.99579366846300.0343080720323355.96989825951-186.004206331543
9526502093.27335154083-111.0365754347133317.76322389389-556.726648459174
9626202313.34629632736-363.0483729705023289.70207664314-306.653703672638
9736203728.82610737815249.532963229463261.64092939239108.826107378147
9830902916.94622106142-3.213074806164923266.26685374475-173.053778938583
9936203732.06637297204237.0408489308553270.8927780971112.066372972042
10028202679.21194130775-328.7518629674473289.53992165969-140.788058692247
10130603087.35706596314-275.5441311854223308.1870652222927.3570659631364
10236003705.50158826302170.2554269734363324.24298476355105.501588263017
10329402975.64570470268-435.9446090074883340.2989043048135.6457047026811
10435503712.6296163620548.45925993996653338.91112369798162.629616362049
10545905330.2607965058512.2158604030443337.52334309116740.260796505795
10631202604.63349693276300.0343080720323335.33219499521-515.36650306724
10728002377.89552853546-111.0365754347133333.14104689925-422.104471464542
10833803765.79765341003-363.0483729705023357.25071956047385.797653410033
10934903349.10664454886249.532963229463381.36039222168-140.893355451143
11029402474.00463615924-3.213074806164923409.20843864693-465.995363840764
11135003325.90266599697237.0408489308553437.05648507217-174.097334003029
11229802822.15142800198-328.7518629674473466.60043496546-157.848571998018
11330402859.39974632667-275.5441311854223496.14438485876-180.600253673334
11441604619.18099059602170.2554269734363530.56358243055459.180990596017
11531103090.96182900515-435.9446090074883564.98278000234-19.0381709948492
11638904127.4991689218948.45925993996653604.04157113815237.499168921886

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 2620 & 2291.51594122244 & 249.53296322946 & 2698.9510955481 & -328.484058777555 \tabularnewline
2 & 2940 & 3137.89632294747 & -3.21307480616492 & 2745.3167518587 & 197.896322947467 \tabularnewline
3 & 3080 & 3131.27674289984 & 237.040848930855 & 2791.6824081693 & 51.2767428998436 \tabularnewline
4 & 3120 & 3727.39797040241 & -328.751862967447 & 2841.35389256504 & 607.397970402408 \tabularnewline
5 & 2420 & 2224.51875422464 & -275.544131185422 & 2891.02537696078 & -195.481245775356 \tabularnewline
6 & 2930 & 2745.55229285381 & 170.255426973436 & 2944.19228017275 & -184.447707146185 \tabularnewline
7 & 2780 & 2998.58542562277 & -435.944609007488 & 2997.35918338472 & 218.585425622769 \tabularnewline
8 & 2890 & 2682.45827867552 & 48.4592599399665 & 3049.08246138452 & -207.541721324482 \tabularnewline
9 & 3000 & 2386.97840021265 & 512.215860403044 & 3100.80573938431 & -613.021599787355 \tabularnewline
10 & 3380 & 3314.83212341717 & 300.034308072032 & 3145.13356851079 & -65.167876582826 \tabularnewline
11 & 3460 & 3841.57517779744 & -111.036575434713 & 3189.46139763728 & 381.575177797436 \tabularnewline
12 & 2810 & 2750.67406166412 & -363.048372970502 & 3232.37431130638 & -59.3259383358782 \tabularnewline
13 & 3530 & 3535.17981179506 & 249.53296322946 & 3275.28722497548 & 5.17981179505614 \tabularnewline
14 & 3590 & 3878.17369683448 & -3.21307480616492 & 3305.03937797168 & 288.173696834481 \tabularnewline
15 & 3840 & 4108.16762010126 & 237.040848930855 & 3334.79153096788 & 268.16762010126 \tabularnewline
16 & 3520 & 4013.3336925153 & -328.751862967447 & 3355.41817045215 & 493.333692515296 \tabularnewline
17 & 2820 & 2539.499321249 & -275.544131185422 & 3376.04480993642 & -280.500678750996 \tabularnewline
18 & 3310 & 3066.32558039197 & 170.255426973436 & 3383.41899263459 & -243.67441960803 \tabularnewline
19 & 2870 & 2785.15143367472 & -435.944609007488 & 3390.79317533277 & -84.84856632528 \tabularnewline
20 & 3340 & 3239.95314671916 & 48.4592599399665 & 3391.58759334088 & -100.046853280844 \tabularnewline
21 & 3660 & 3415.40212824797 & 512.215860403044 & 3392.38201134899 & -244.59787175203 \tabularnewline
22 & 3650 & 3602.6453560501 & 300.034308072032 & 3397.32033587787 & -47.3546439499028 \tabularnewline
23 & 3670 & 4048.77791502796 & -111.036575434713 & 3402.25866040675 & 378.777915027958 \tabularnewline
24 & 3050 & 3045.71241943432 & -363.048372970502 & 3417.33595353619 & -4.28758056568404 \tabularnewline
25 & 3770 & 3858.05379010492 & 249.53296322946 & 3432.41324666562 & 88.0537901049224 \tabularnewline
26 & 3480 & 3524.75193091506 & -3.21307480616492 & 3438.46114389111 & 44.751930915058 \tabularnewline
27 & 3780 & 3878.45010995255 & 237.040848930855 & 3444.5090411166 & 98.4501099525487 \tabularnewline
28 & 2750 & 2390.05209441196 & -328.751862967447 & 3438.69976855549 & -359.947905588039 \tabularnewline
29 & 3600 & 4042.65363519105 & -275.544131185422 & 3432.89049599438 & 442.653635191045 \tabularnewline
30 & 3550 & 3504.37295293505 & 170.255426973436 & 3425.37162009151 & -45.6270470649497 \tabularnewline
31 & 2750 & 2518.09186481884 & -435.944609007488 & 3417.85274418865 & -231.908135181161 \tabularnewline
32 & 3480 & 3499.20678397922 & 48.4592599399665 & 3412.33395608081 & 19.2067839792239 \tabularnewline
33 & 3870 & 3820.96897162399 & 512.215860403044 & 3406.81516797297 & -49.0310283760132 \tabularnewline
34 & 3640 & 3574.87187944391 & 300.034308072032 & 3405.09381248406 & -65.1281205560927 \tabularnewline
35 & 3340 & 3387.66411843956 & -111.036575434713 & 3403.37245699515 & 47.6641184395621 \tabularnewline
36 & 3030 & 3009.13432768573 & -363.048372970502 & 3413.91404528477 & -20.8656723142703 \tabularnewline
37 & 3850 & 4026.01140319615 & 249.53296322946 & 3424.45563357439 & 176.011403196146 \tabularnewline
38 & 3400 & 3356.26655999346 & -3.21307480616492 & 3446.9465148127 & -43.7334400065379 \tabularnewline
39 & 3450 & 3193.52175501813 & 237.040848930855 & 3469.43739605101 & -256.478244981867 \tabularnewline
40 & 3000 & 2835.33123861993 & -328.751862967447 & 3493.42062434751 & -164.668761380066 \tabularnewline
41 & 3190 & 3138.14027854141 & -275.544131185422 & 3517.40385264402 & -51.859721458593 \tabularnewline
42 & 4100 & 4479.72808809899 & 170.255426973436 & 3550.01648492757 & 379.728088098995 \tabularnewline
43 & 2960 & 2773.31549179637 & -435.944609007488 & 3582.62911721112 & -186.684508203634 \tabularnewline
44 & 3640 & 3615.35044341743 & 48.4592599399665 & 3616.19029664261 & -24.6495565825726 \tabularnewline
45 & 4210 & 4258.03266352287 & 512.215860403044 & 3649.75147607409 & 48.0326635228671 \tabularnewline
46 & 4040 & 4107.17666094923 & 300.034308072032 & 3672.78903097874 & 67.1766609492324 \tabularnewline
47 & 3470 & 3355.20998955133 & -111.036575434713 & 3695.82658588338 & -114.790010448668 \tabularnewline
48 & 3380 & 3420.87858440236 & -363.048372970502 & 3702.16978856814 & 40.8785844023605 \tabularnewline
49 & 4490 & 5021.95404551764 & 249.53296322946 & 3708.5129912529 & 531.954045517638 \tabularnewline
50 & 3670 & 3632.67691235912 & -3.21307480616492 & 3710.53616244705 & -37.3230876408838 \tabularnewline
51 & 3650 & 3350.39981742795 & 237.040848930855 & 3712.55933364119 & -299.60018257205 \tabularnewline
52 & 3520 & 3661.80396632682 & -328.751862967447 & 3706.94789664063 & 141.803966326815 \tabularnewline
53 & 3470 & 3514.20767154535 & -275.544131185422 & 3701.33645964007 & 44.2076715453527 \tabularnewline
54 & 3570 & 3286.18879420233 & 170.255426973436 & 3683.55577882424 & -283.811205797673 \tabularnewline
55 & 3440 & 3650.16951099908 & -435.944609007488 & 3665.7750980084 & 210.169510999085 \tabularnewline
56 & 3580 & 3468.83222716541 & 48.4592599399665 & 3642.70851289462 & -111.16777283459 \tabularnewline
57 & 4120 & 4108.14221181611 & 512.215860403044 & 3619.64192778084 & -11.8577881838869 \tabularnewline
58 & 4370 & 4841.79174752775 & 300.034308072032 & 3598.17394440022 & 471.791747527752 \tabularnewline
59 & 3250 & 3034.33061441512 & -111.036575434713 & 3576.70596101959 & -215.669385584875 \tabularnewline
60 & 3260 & 3325.04544995579 & -363.048372970502 & 3558.00292301472 & 65.0454499557854 \tabularnewline
61 & 3610 & 3431.1671517607 & 249.53296322946 & 3539.29988500984 & -178.832848239304 \tabularnewline
62 & 3600 & 3680.05456593985 & -3.21307480616492 & 3523.15850886631 & 80.0545659398531 \tabularnewline
63 & 3620 & 3495.94201834637 & 237.040848930855 & 3507.01713272278 & -124.057981653635 \tabularnewline
64 & 3020 & 2866.07126969471 & -328.751862967447 & 3502.68059327274 & -153.928730305292 \tabularnewline
65 & 3240 & 3257.20007736272 & -275.544131185422 & 3498.3440538227 & 17.2000773627224 \tabularnewline
66 & 3360 & 3034.608314507 & 170.255426973436 & 3515.13625851956 & -325.391685492998 \tabularnewline
67 & 3450 & 3804.01614579107 & -435.944609007488 & 3531.92846321642 & 354.016145791066 \tabularnewline
68 & 3640 & 3669.22957948985 & 48.4592599399665 & 3562.31116057018 & 29.2295794898509 \tabularnewline
69 & 3690 & 3275.09028167301 & 512.215860403044 & 3592.69385792394 & -414.909718326986 \tabularnewline
70 & 3870 & 3823.01750950048 & 300.034308072032 & 3616.94818242749 & -46.9824904995203 \tabularnewline
71 & 3810 & 4089.83406850368 & -111.036575434713 & 3641.20250693103 & 279.83406850368 \tabularnewline
72 & 3430 & 3579.76190112187 & -363.048372970502 & 3643.28647184863 & 149.76190112187 \tabularnewline
73 & 3910 & 3925.09660000431 & 249.53296322946 & 3645.37043676623 & 15.096600004309 \tabularnewline
74 & 3800 & 3960.69861801415 & -3.21307480616492 & 3642.51445679202 & 160.698618014149 \tabularnewline
75 & 4140 & 4403.30067425134 & 237.040848930855 & 3639.6584768178 & 263.300674251343 \tabularnewline
76 & 3350 & 3386.51202435619 & -328.751862967447 & 3642.23983861126 & 36.5120243561892 \tabularnewline
77 & 3360 & 3350.72293078071 & -275.544131185422 & 3644.82120040472 & -9.27706921929257 \tabularnewline
78 & 3310 & 2818.05318233055 & 170.255426973436 & 3631.69139069601 & -491.946817669451 \tabularnewline
79 & 2850 & 2517.38302802017 & -435.944609007488 & 3618.56158098731 & -332.616971979825 \tabularnewline
80 & 3630 & 3609.31446730459 & 48.4592599399665 & 3602.22627275544 & -20.6855326954101 \tabularnewline
81 & 4340 & 4581.89317507338 & 512.215860403044 & 3585.89096452357 & 241.893175073383 \tabularnewline
82 & 4260 & 4633.92536981503 & 300.034308072032 & 3586.04032211294 & 373.925369815027 \tabularnewline
83 & 3690 & 3904.8468957324 & -111.036575434713 & 3586.18967970231 & 214.846895732405 \tabularnewline
84 & 2990 & 2739.9617609703 & -363.048372970502 & 3603.0866120002 & -250.038239029696 \tabularnewline
85 & 3620 & 3370.48349247245 & 249.53296322946 & 3619.98354429809 & -249.516507527548 \tabularnewline
86 & 3590 & 3565.13592068896 & -3.21307480616492 & 3618.07715411721 & -24.8640793110403 \tabularnewline
87 & 3940 & 4026.78838713282 & 237.040848930855 & 3616.17076393632 & 86.7883871328218 \tabularnewline
88 & 2970 & 2686.36125256857 & -328.751862967447 & 3582.39061039887 & -283.638747431427 \tabularnewline
89 & 3470 & 3666.933674324 & -275.544131185422 & 3548.61045686142 & 196.933674323998 \tabularnewline
90 & 4310 & 4940.58515589294 & 170.255426973436 & 3509.15941713362 & 630.585155892945 \tabularnewline
91 & 3060 & 3086.23623160168 & -435.944609007488 & 3469.70837740581 & 26.2362316016752 \tabularnewline
92 & 3480 & 3479.59826504456 & 48.4592599399665 & 3431.94247501547 & -0.401734955440588 \tabularnewline
93 & 4190 & 4473.60756697182 & 512.215860403044 & 3394.17657262513 & 283.607566971822 \tabularnewline
94 & 3470 & 3283.99579366846 & 300.034308072032 & 3355.96989825951 & -186.004206331543 \tabularnewline
95 & 2650 & 2093.27335154083 & -111.036575434713 & 3317.76322389389 & -556.726648459174 \tabularnewline
96 & 2620 & 2313.34629632736 & -363.048372970502 & 3289.70207664314 & -306.653703672638 \tabularnewline
97 & 3620 & 3728.82610737815 & 249.53296322946 & 3261.64092939239 & 108.826107378147 \tabularnewline
98 & 3090 & 2916.94622106142 & -3.21307480616492 & 3266.26685374475 & -173.053778938583 \tabularnewline
99 & 3620 & 3732.06637297204 & 237.040848930855 & 3270.8927780971 & 112.066372972042 \tabularnewline
100 & 2820 & 2679.21194130775 & -328.751862967447 & 3289.53992165969 & -140.788058692247 \tabularnewline
101 & 3060 & 3087.35706596314 & -275.544131185422 & 3308.18706522229 & 27.3570659631364 \tabularnewline
102 & 3600 & 3705.50158826302 & 170.255426973436 & 3324.24298476355 & 105.501588263017 \tabularnewline
103 & 2940 & 2975.64570470268 & -435.944609007488 & 3340.29890430481 & 35.6457047026811 \tabularnewline
104 & 3550 & 3712.62961636205 & 48.4592599399665 & 3338.91112369798 & 162.629616362049 \tabularnewline
105 & 4590 & 5330.2607965058 & 512.215860403044 & 3337.52334309116 & 740.260796505795 \tabularnewline
106 & 3120 & 2604.63349693276 & 300.034308072032 & 3335.33219499521 & -515.36650306724 \tabularnewline
107 & 2800 & 2377.89552853546 & -111.036575434713 & 3333.14104689925 & -422.104471464542 \tabularnewline
108 & 3380 & 3765.79765341003 & -363.048372970502 & 3357.25071956047 & 385.797653410033 \tabularnewline
109 & 3490 & 3349.10664454886 & 249.53296322946 & 3381.36039222168 & -140.893355451143 \tabularnewline
110 & 2940 & 2474.00463615924 & -3.21307480616492 & 3409.20843864693 & -465.995363840764 \tabularnewline
111 & 3500 & 3325.90266599697 & 237.040848930855 & 3437.05648507217 & -174.097334003029 \tabularnewline
112 & 2980 & 2822.15142800198 & -328.751862967447 & 3466.60043496546 & -157.848571998018 \tabularnewline
113 & 3040 & 2859.39974632667 & -275.544131185422 & 3496.14438485876 & -180.600253673334 \tabularnewline
114 & 4160 & 4619.18099059602 & 170.255426973436 & 3530.56358243055 & 459.180990596017 \tabularnewline
115 & 3110 & 3090.96182900515 & -435.944609007488 & 3564.98278000234 & -19.0381709948492 \tabularnewline
116 & 3890 & 4127.49916892189 & 48.4592599399665 & 3604.04157113815 & 237.499168921886 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297965&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]2620[/C][C]2291.51594122244[/C][C]249.53296322946[/C][C]2698.9510955481[/C][C]-328.484058777555[/C][/ROW]
[ROW][C]2[/C][C]2940[/C][C]3137.89632294747[/C][C]-3.21307480616492[/C][C]2745.3167518587[/C][C]197.896322947467[/C][/ROW]
[ROW][C]3[/C][C]3080[/C][C]3131.27674289984[/C][C]237.040848930855[/C][C]2791.6824081693[/C][C]51.2767428998436[/C][/ROW]
[ROW][C]4[/C][C]3120[/C][C]3727.39797040241[/C][C]-328.751862967447[/C][C]2841.35389256504[/C][C]607.397970402408[/C][/ROW]
[ROW][C]5[/C][C]2420[/C][C]2224.51875422464[/C][C]-275.544131185422[/C][C]2891.02537696078[/C][C]-195.481245775356[/C][/ROW]
[ROW][C]6[/C][C]2930[/C][C]2745.55229285381[/C][C]170.255426973436[/C][C]2944.19228017275[/C][C]-184.447707146185[/C][/ROW]
[ROW][C]7[/C][C]2780[/C][C]2998.58542562277[/C][C]-435.944609007488[/C][C]2997.35918338472[/C][C]218.585425622769[/C][/ROW]
[ROW][C]8[/C][C]2890[/C][C]2682.45827867552[/C][C]48.4592599399665[/C][C]3049.08246138452[/C][C]-207.541721324482[/C][/ROW]
[ROW][C]9[/C][C]3000[/C][C]2386.97840021265[/C][C]512.215860403044[/C][C]3100.80573938431[/C][C]-613.021599787355[/C][/ROW]
[ROW][C]10[/C][C]3380[/C][C]3314.83212341717[/C][C]300.034308072032[/C][C]3145.13356851079[/C][C]-65.167876582826[/C][/ROW]
[ROW][C]11[/C][C]3460[/C][C]3841.57517779744[/C][C]-111.036575434713[/C][C]3189.46139763728[/C][C]381.575177797436[/C][/ROW]
[ROW][C]12[/C][C]2810[/C][C]2750.67406166412[/C][C]-363.048372970502[/C][C]3232.37431130638[/C][C]-59.3259383358782[/C][/ROW]
[ROW][C]13[/C][C]3530[/C][C]3535.17981179506[/C][C]249.53296322946[/C][C]3275.28722497548[/C][C]5.17981179505614[/C][/ROW]
[ROW][C]14[/C][C]3590[/C][C]3878.17369683448[/C][C]-3.21307480616492[/C][C]3305.03937797168[/C][C]288.173696834481[/C][/ROW]
[ROW][C]15[/C][C]3840[/C][C]4108.16762010126[/C][C]237.040848930855[/C][C]3334.79153096788[/C][C]268.16762010126[/C][/ROW]
[ROW][C]16[/C][C]3520[/C][C]4013.3336925153[/C][C]-328.751862967447[/C][C]3355.41817045215[/C][C]493.333692515296[/C][/ROW]
[ROW][C]17[/C][C]2820[/C][C]2539.499321249[/C][C]-275.544131185422[/C][C]3376.04480993642[/C][C]-280.500678750996[/C][/ROW]
[ROW][C]18[/C][C]3310[/C][C]3066.32558039197[/C][C]170.255426973436[/C][C]3383.41899263459[/C][C]-243.67441960803[/C][/ROW]
[ROW][C]19[/C][C]2870[/C][C]2785.15143367472[/C][C]-435.944609007488[/C][C]3390.79317533277[/C][C]-84.84856632528[/C][/ROW]
[ROW][C]20[/C][C]3340[/C][C]3239.95314671916[/C][C]48.4592599399665[/C][C]3391.58759334088[/C][C]-100.046853280844[/C][/ROW]
[ROW][C]21[/C][C]3660[/C][C]3415.40212824797[/C][C]512.215860403044[/C][C]3392.38201134899[/C][C]-244.59787175203[/C][/ROW]
[ROW][C]22[/C][C]3650[/C][C]3602.6453560501[/C][C]300.034308072032[/C][C]3397.32033587787[/C][C]-47.3546439499028[/C][/ROW]
[ROW][C]23[/C][C]3670[/C][C]4048.77791502796[/C][C]-111.036575434713[/C][C]3402.25866040675[/C][C]378.777915027958[/C][/ROW]
[ROW][C]24[/C][C]3050[/C][C]3045.71241943432[/C][C]-363.048372970502[/C][C]3417.33595353619[/C][C]-4.28758056568404[/C][/ROW]
[ROW][C]25[/C][C]3770[/C][C]3858.05379010492[/C][C]249.53296322946[/C][C]3432.41324666562[/C][C]88.0537901049224[/C][/ROW]
[ROW][C]26[/C][C]3480[/C][C]3524.75193091506[/C][C]-3.21307480616492[/C][C]3438.46114389111[/C][C]44.751930915058[/C][/ROW]
[ROW][C]27[/C][C]3780[/C][C]3878.45010995255[/C][C]237.040848930855[/C][C]3444.5090411166[/C][C]98.4501099525487[/C][/ROW]
[ROW][C]28[/C][C]2750[/C][C]2390.05209441196[/C][C]-328.751862967447[/C][C]3438.69976855549[/C][C]-359.947905588039[/C][/ROW]
[ROW][C]29[/C][C]3600[/C][C]4042.65363519105[/C][C]-275.544131185422[/C][C]3432.89049599438[/C][C]442.653635191045[/C][/ROW]
[ROW][C]30[/C][C]3550[/C][C]3504.37295293505[/C][C]170.255426973436[/C][C]3425.37162009151[/C][C]-45.6270470649497[/C][/ROW]
[ROW][C]31[/C][C]2750[/C][C]2518.09186481884[/C][C]-435.944609007488[/C][C]3417.85274418865[/C][C]-231.908135181161[/C][/ROW]
[ROW][C]32[/C][C]3480[/C][C]3499.20678397922[/C][C]48.4592599399665[/C][C]3412.33395608081[/C][C]19.2067839792239[/C][/ROW]
[ROW][C]33[/C][C]3870[/C][C]3820.96897162399[/C][C]512.215860403044[/C][C]3406.81516797297[/C][C]-49.0310283760132[/C][/ROW]
[ROW][C]34[/C][C]3640[/C][C]3574.87187944391[/C][C]300.034308072032[/C][C]3405.09381248406[/C][C]-65.1281205560927[/C][/ROW]
[ROW][C]35[/C][C]3340[/C][C]3387.66411843956[/C][C]-111.036575434713[/C][C]3403.37245699515[/C][C]47.6641184395621[/C][/ROW]
[ROW][C]36[/C][C]3030[/C][C]3009.13432768573[/C][C]-363.048372970502[/C][C]3413.91404528477[/C][C]-20.8656723142703[/C][/ROW]
[ROW][C]37[/C][C]3850[/C][C]4026.01140319615[/C][C]249.53296322946[/C][C]3424.45563357439[/C][C]176.011403196146[/C][/ROW]
[ROW][C]38[/C][C]3400[/C][C]3356.26655999346[/C][C]-3.21307480616492[/C][C]3446.9465148127[/C][C]-43.7334400065379[/C][/ROW]
[ROW][C]39[/C][C]3450[/C][C]3193.52175501813[/C][C]237.040848930855[/C][C]3469.43739605101[/C][C]-256.478244981867[/C][/ROW]
[ROW][C]40[/C][C]3000[/C][C]2835.33123861993[/C][C]-328.751862967447[/C][C]3493.42062434751[/C][C]-164.668761380066[/C][/ROW]
[ROW][C]41[/C][C]3190[/C][C]3138.14027854141[/C][C]-275.544131185422[/C][C]3517.40385264402[/C][C]-51.859721458593[/C][/ROW]
[ROW][C]42[/C][C]4100[/C][C]4479.72808809899[/C][C]170.255426973436[/C][C]3550.01648492757[/C][C]379.728088098995[/C][/ROW]
[ROW][C]43[/C][C]2960[/C][C]2773.31549179637[/C][C]-435.944609007488[/C][C]3582.62911721112[/C][C]-186.684508203634[/C][/ROW]
[ROW][C]44[/C][C]3640[/C][C]3615.35044341743[/C][C]48.4592599399665[/C][C]3616.19029664261[/C][C]-24.6495565825726[/C][/ROW]
[ROW][C]45[/C][C]4210[/C][C]4258.03266352287[/C][C]512.215860403044[/C][C]3649.75147607409[/C][C]48.0326635228671[/C][/ROW]
[ROW][C]46[/C][C]4040[/C][C]4107.17666094923[/C][C]300.034308072032[/C][C]3672.78903097874[/C][C]67.1766609492324[/C][/ROW]
[ROW][C]47[/C][C]3470[/C][C]3355.20998955133[/C][C]-111.036575434713[/C][C]3695.82658588338[/C][C]-114.790010448668[/C][/ROW]
[ROW][C]48[/C][C]3380[/C][C]3420.87858440236[/C][C]-363.048372970502[/C][C]3702.16978856814[/C][C]40.8785844023605[/C][/ROW]
[ROW][C]49[/C][C]4490[/C][C]5021.95404551764[/C][C]249.53296322946[/C][C]3708.5129912529[/C][C]531.954045517638[/C][/ROW]
[ROW][C]50[/C][C]3670[/C][C]3632.67691235912[/C][C]-3.21307480616492[/C][C]3710.53616244705[/C][C]-37.3230876408838[/C][/ROW]
[ROW][C]51[/C][C]3650[/C][C]3350.39981742795[/C][C]237.040848930855[/C][C]3712.55933364119[/C][C]-299.60018257205[/C][/ROW]
[ROW][C]52[/C][C]3520[/C][C]3661.80396632682[/C][C]-328.751862967447[/C][C]3706.94789664063[/C][C]141.803966326815[/C][/ROW]
[ROW][C]53[/C][C]3470[/C][C]3514.20767154535[/C][C]-275.544131185422[/C][C]3701.33645964007[/C][C]44.2076715453527[/C][/ROW]
[ROW][C]54[/C][C]3570[/C][C]3286.18879420233[/C][C]170.255426973436[/C][C]3683.55577882424[/C][C]-283.811205797673[/C][/ROW]
[ROW][C]55[/C][C]3440[/C][C]3650.16951099908[/C][C]-435.944609007488[/C][C]3665.7750980084[/C][C]210.169510999085[/C][/ROW]
[ROW][C]56[/C][C]3580[/C][C]3468.83222716541[/C][C]48.4592599399665[/C][C]3642.70851289462[/C][C]-111.16777283459[/C][/ROW]
[ROW][C]57[/C][C]4120[/C][C]4108.14221181611[/C][C]512.215860403044[/C][C]3619.64192778084[/C][C]-11.8577881838869[/C][/ROW]
[ROW][C]58[/C][C]4370[/C][C]4841.79174752775[/C][C]300.034308072032[/C][C]3598.17394440022[/C][C]471.791747527752[/C][/ROW]
[ROW][C]59[/C][C]3250[/C][C]3034.33061441512[/C][C]-111.036575434713[/C][C]3576.70596101959[/C][C]-215.669385584875[/C][/ROW]
[ROW][C]60[/C][C]3260[/C][C]3325.04544995579[/C][C]-363.048372970502[/C][C]3558.00292301472[/C][C]65.0454499557854[/C][/ROW]
[ROW][C]61[/C][C]3610[/C][C]3431.1671517607[/C][C]249.53296322946[/C][C]3539.29988500984[/C][C]-178.832848239304[/C][/ROW]
[ROW][C]62[/C][C]3600[/C][C]3680.05456593985[/C][C]-3.21307480616492[/C][C]3523.15850886631[/C][C]80.0545659398531[/C][/ROW]
[ROW][C]63[/C][C]3620[/C][C]3495.94201834637[/C][C]237.040848930855[/C][C]3507.01713272278[/C][C]-124.057981653635[/C][/ROW]
[ROW][C]64[/C][C]3020[/C][C]2866.07126969471[/C][C]-328.751862967447[/C][C]3502.68059327274[/C][C]-153.928730305292[/C][/ROW]
[ROW][C]65[/C][C]3240[/C][C]3257.20007736272[/C][C]-275.544131185422[/C][C]3498.3440538227[/C][C]17.2000773627224[/C][/ROW]
[ROW][C]66[/C][C]3360[/C][C]3034.608314507[/C][C]170.255426973436[/C][C]3515.13625851956[/C][C]-325.391685492998[/C][/ROW]
[ROW][C]67[/C][C]3450[/C][C]3804.01614579107[/C][C]-435.944609007488[/C][C]3531.92846321642[/C][C]354.016145791066[/C][/ROW]
[ROW][C]68[/C][C]3640[/C][C]3669.22957948985[/C][C]48.4592599399665[/C][C]3562.31116057018[/C][C]29.2295794898509[/C][/ROW]
[ROW][C]69[/C][C]3690[/C][C]3275.09028167301[/C][C]512.215860403044[/C][C]3592.69385792394[/C][C]-414.909718326986[/C][/ROW]
[ROW][C]70[/C][C]3870[/C][C]3823.01750950048[/C][C]300.034308072032[/C][C]3616.94818242749[/C][C]-46.9824904995203[/C][/ROW]
[ROW][C]71[/C][C]3810[/C][C]4089.83406850368[/C][C]-111.036575434713[/C][C]3641.20250693103[/C][C]279.83406850368[/C][/ROW]
[ROW][C]72[/C][C]3430[/C][C]3579.76190112187[/C][C]-363.048372970502[/C][C]3643.28647184863[/C][C]149.76190112187[/C][/ROW]
[ROW][C]73[/C][C]3910[/C][C]3925.09660000431[/C][C]249.53296322946[/C][C]3645.37043676623[/C][C]15.096600004309[/C][/ROW]
[ROW][C]74[/C][C]3800[/C][C]3960.69861801415[/C][C]-3.21307480616492[/C][C]3642.51445679202[/C][C]160.698618014149[/C][/ROW]
[ROW][C]75[/C][C]4140[/C][C]4403.30067425134[/C][C]237.040848930855[/C][C]3639.6584768178[/C][C]263.300674251343[/C][/ROW]
[ROW][C]76[/C][C]3350[/C][C]3386.51202435619[/C][C]-328.751862967447[/C][C]3642.23983861126[/C][C]36.5120243561892[/C][/ROW]
[ROW][C]77[/C][C]3360[/C][C]3350.72293078071[/C][C]-275.544131185422[/C][C]3644.82120040472[/C][C]-9.27706921929257[/C][/ROW]
[ROW][C]78[/C][C]3310[/C][C]2818.05318233055[/C][C]170.255426973436[/C][C]3631.69139069601[/C][C]-491.946817669451[/C][/ROW]
[ROW][C]79[/C][C]2850[/C][C]2517.38302802017[/C][C]-435.944609007488[/C][C]3618.56158098731[/C][C]-332.616971979825[/C][/ROW]
[ROW][C]80[/C][C]3630[/C][C]3609.31446730459[/C][C]48.4592599399665[/C][C]3602.22627275544[/C][C]-20.6855326954101[/C][/ROW]
[ROW][C]81[/C][C]4340[/C][C]4581.89317507338[/C][C]512.215860403044[/C][C]3585.89096452357[/C][C]241.893175073383[/C][/ROW]
[ROW][C]82[/C][C]4260[/C][C]4633.92536981503[/C][C]300.034308072032[/C][C]3586.04032211294[/C][C]373.925369815027[/C][/ROW]
[ROW][C]83[/C][C]3690[/C][C]3904.8468957324[/C][C]-111.036575434713[/C][C]3586.18967970231[/C][C]214.846895732405[/C][/ROW]
[ROW][C]84[/C][C]2990[/C][C]2739.9617609703[/C][C]-363.048372970502[/C][C]3603.0866120002[/C][C]-250.038239029696[/C][/ROW]
[ROW][C]85[/C][C]3620[/C][C]3370.48349247245[/C][C]249.53296322946[/C][C]3619.98354429809[/C][C]-249.516507527548[/C][/ROW]
[ROW][C]86[/C][C]3590[/C][C]3565.13592068896[/C][C]-3.21307480616492[/C][C]3618.07715411721[/C][C]-24.8640793110403[/C][/ROW]
[ROW][C]87[/C][C]3940[/C][C]4026.78838713282[/C][C]237.040848930855[/C][C]3616.17076393632[/C][C]86.7883871328218[/C][/ROW]
[ROW][C]88[/C][C]2970[/C][C]2686.36125256857[/C][C]-328.751862967447[/C][C]3582.39061039887[/C][C]-283.638747431427[/C][/ROW]
[ROW][C]89[/C][C]3470[/C][C]3666.933674324[/C][C]-275.544131185422[/C][C]3548.61045686142[/C][C]196.933674323998[/C][/ROW]
[ROW][C]90[/C][C]4310[/C][C]4940.58515589294[/C][C]170.255426973436[/C][C]3509.15941713362[/C][C]630.585155892945[/C][/ROW]
[ROW][C]91[/C][C]3060[/C][C]3086.23623160168[/C][C]-435.944609007488[/C][C]3469.70837740581[/C][C]26.2362316016752[/C][/ROW]
[ROW][C]92[/C][C]3480[/C][C]3479.59826504456[/C][C]48.4592599399665[/C][C]3431.94247501547[/C][C]-0.401734955440588[/C][/ROW]
[ROW][C]93[/C][C]4190[/C][C]4473.60756697182[/C][C]512.215860403044[/C][C]3394.17657262513[/C][C]283.607566971822[/C][/ROW]
[ROW][C]94[/C][C]3470[/C][C]3283.99579366846[/C][C]300.034308072032[/C][C]3355.96989825951[/C][C]-186.004206331543[/C][/ROW]
[ROW][C]95[/C][C]2650[/C][C]2093.27335154083[/C][C]-111.036575434713[/C][C]3317.76322389389[/C][C]-556.726648459174[/C][/ROW]
[ROW][C]96[/C][C]2620[/C][C]2313.34629632736[/C][C]-363.048372970502[/C][C]3289.70207664314[/C][C]-306.653703672638[/C][/ROW]
[ROW][C]97[/C][C]3620[/C][C]3728.82610737815[/C][C]249.53296322946[/C][C]3261.64092939239[/C][C]108.826107378147[/C][/ROW]
[ROW][C]98[/C][C]3090[/C][C]2916.94622106142[/C][C]-3.21307480616492[/C][C]3266.26685374475[/C][C]-173.053778938583[/C][/ROW]
[ROW][C]99[/C][C]3620[/C][C]3732.06637297204[/C][C]237.040848930855[/C][C]3270.8927780971[/C][C]112.066372972042[/C][/ROW]
[ROW][C]100[/C][C]2820[/C][C]2679.21194130775[/C][C]-328.751862967447[/C][C]3289.53992165969[/C][C]-140.788058692247[/C][/ROW]
[ROW][C]101[/C][C]3060[/C][C]3087.35706596314[/C][C]-275.544131185422[/C][C]3308.18706522229[/C][C]27.3570659631364[/C][/ROW]
[ROW][C]102[/C][C]3600[/C][C]3705.50158826302[/C][C]170.255426973436[/C][C]3324.24298476355[/C][C]105.501588263017[/C][/ROW]
[ROW][C]103[/C][C]2940[/C][C]2975.64570470268[/C][C]-435.944609007488[/C][C]3340.29890430481[/C][C]35.6457047026811[/C][/ROW]
[ROW][C]104[/C][C]3550[/C][C]3712.62961636205[/C][C]48.4592599399665[/C][C]3338.91112369798[/C][C]162.629616362049[/C][/ROW]
[ROW][C]105[/C][C]4590[/C][C]5330.2607965058[/C][C]512.215860403044[/C][C]3337.52334309116[/C][C]740.260796505795[/C][/ROW]
[ROW][C]106[/C][C]3120[/C][C]2604.63349693276[/C][C]300.034308072032[/C][C]3335.33219499521[/C][C]-515.36650306724[/C][/ROW]
[ROW][C]107[/C][C]2800[/C][C]2377.89552853546[/C][C]-111.036575434713[/C][C]3333.14104689925[/C][C]-422.104471464542[/C][/ROW]
[ROW][C]108[/C][C]3380[/C][C]3765.79765341003[/C][C]-363.048372970502[/C][C]3357.25071956047[/C][C]385.797653410033[/C][/ROW]
[ROW][C]109[/C][C]3490[/C][C]3349.10664454886[/C][C]249.53296322946[/C][C]3381.36039222168[/C][C]-140.893355451143[/C][/ROW]
[ROW][C]110[/C][C]2940[/C][C]2474.00463615924[/C][C]-3.21307480616492[/C][C]3409.20843864693[/C][C]-465.995363840764[/C][/ROW]
[ROW][C]111[/C][C]3500[/C][C]3325.90266599697[/C][C]237.040848930855[/C][C]3437.05648507217[/C][C]-174.097334003029[/C][/ROW]
[ROW][C]112[/C][C]2980[/C][C]2822.15142800198[/C][C]-328.751862967447[/C][C]3466.60043496546[/C][C]-157.848571998018[/C][/ROW]
[ROW][C]113[/C][C]3040[/C][C]2859.39974632667[/C][C]-275.544131185422[/C][C]3496.14438485876[/C][C]-180.600253673334[/C][/ROW]
[ROW][C]114[/C][C]4160[/C][C]4619.18099059602[/C][C]170.255426973436[/C][C]3530.56358243055[/C][C]459.180990596017[/C][/ROW]
[ROW][C]115[/C][C]3110[/C][C]3090.96182900515[/C][C]-435.944609007488[/C][C]3564.98278000234[/C][C]-19.0381709948492[/C][/ROW]
[ROW][C]116[/C][C]3890[/C][C]4127.49916892189[/C][C]48.4592599399665[/C][C]3604.04157113815[/C][C]237.499168921886[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297965&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297965&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
126202291.51594122244249.532963229462698.9510955481-328.484058777555
229403137.89632294747-3.213074806164922745.3167518587197.896322947467
330803131.27674289984237.0408489308552791.682408169351.2767428998436
431203727.39797040241-328.7518629674472841.35389256504607.397970402408
524202224.51875422464-275.5441311854222891.02537696078-195.481245775356
629302745.55229285381170.2554269734362944.19228017275-184.447707146185
727802998.58542562277-435.9446090074882997.35918338472218.585425622769
828902682.4582786755248.45925993996653049.08246138452-207.541721324482
930002386.97840021265512.2158604030443100.80573938431-613.021599787355
1033803314.83212341717300.0343080720323145.13356851079-65.167876582826
1134603841.57517779744-111.0365754347133189.46139763728381.575177797436
1228102750.67406166412-363.0483729705023232.37431130638-59.3259383358782
1335303535.17981179506249.532963229463275.287224975485.17981179505614
1435903878.17369683448-3.213074806164923305.03937797168288.173696834481
1538404108.16762010126237.0408489308553334.79153096788268.16762010126
1635204013.3336925153-328.7518629674473355.41817045215493.333692515296
1728202539.499321249-275.5441311854223376.04480993642-280.500678750996
1833103066.32558039197170.2554269734363383.41899263459-243.67441960803
1928702785.15143367472-435.9446090074883390.79317533277-84.84856632528
2033403239.9531467191648.45925993996653391.58759334088-100.046853280844
2136603415.40212824797512.2158604030443392.38201134899-244.59787175203
2236503602.6453560501300.0343080720323397.32033587787-47.3546439499028
2336704048.77791502796-111.0365754347133402.25866040675378.777915027958
2430503045.71241943432-363.0483729705023417.33595353619-4.28758056568404
2537703858.05379010492249.532963229463432.4132466656288.0537901049224
2634803524.75193091506-3.213074806164923438.4611438911144.751930915058
2737803878.45010995255237.0408489308553444.509041116698.4501099525487
2827502390.05209441196-328.7518629674473438.69976855549-359.947905588039
2936004042.65363519105-275.5441311854223432.89049599438442.653635191045
3035503504.37295293505170.2554269734363425.37162009151-45.6270470649497
3127502518.09186481884-435.9446090074883417.85274418865-231.908135181161
3234803499.2067839792248.45925993996653412.3339560808119.2067839792239
3338703820.96897162399512.2158604030443406.81516797297-49.0310283760132
3436403574.87187944391300.0343080720323405.09381248406-65.1281205560927
3533403387.66411843956-111.0365754347133403.3724569951547.6641184395621
3630303009.13432768573-363.0483729705023413.91404528477-20.8656723142703
3738504026.01140319615249.532963229463424.45563357439176.011403196146
3834003356.26655999346-3.213074806164923446.9465148127-43.7334400065379
3934503193.52175501813237.0408489308553469.43739605101-256.478244981867
4030002835.33123861993-328.7518629674473493.42062434751-164.668761380066
4131903138.14027854141-275.5441311854223517.40385264402-51.859721458593
4241004479.72808809899170.2554269734363550.01648492757379.728088098995
4329602773.31549179637-435.9446090074883582.62911721112-186.684508203634
4436403615.3504434174348.45925993996653616.19029664261-24.6495565825726
4542104258.03266352287512.2158604030443649.7514760740948.0326635228671
4640404107.17666094923300.0343080720323672.7890309787467.1766609492324
4734703355.20998955133-111.0365754347133695.82658588338-114.790010448668
4833803420.87858440236-363.0483729705023702.1697885681440.8785844023605
4944905021.95404551764249.532963229463708.5129912529531.954045517638
5036703632.67691235912-3.213074806164923710.53616244705-37.3230876408838
5136503350.39981742795237.0408489308553712.55933364119-299.60018257205
5235203661.80396632682-328.7518629674473706.94789664063141.803966326815
5334703514.20767154535-275.5441311854223701.3364596400744.2076715453527
5435703286.18879420233170.2554269734363683.55577882424-283.811205797673
5534403650.16951099908-435.9446090074883665.7750980084210.169510999085
5635803468.8322271654148.45925993996653642.70851289462-111.16777283459
5741204108.14221181611512.2158604030443619.64192778084-11.8577881838869
5843704841.79174752775300.0343080720323598.17394440022471.791747527752
5932503034.33061441512-111.0365754347133576.70596101959-215.669385584875
6032603325.04544995579-363.0483729705023558.0029230147265.0454499557854
6136103431.1671517607249.532963229463539.29988500984-178.832848239304
6236003680.05456593985-3.213074806164923523.1585088663180.0545659398531
6336203495.94201834637237.0408489308553507.01713272278-124.057981653635
6430202866.07126969471-328.7518629674473502.68059327274-153.928730305292
6532403257.20007736272-275.5441311854223498.344053822717.2000773627224
6633603034.608314507170.2554269734363515.13625851956-325.391685492998
6734503804.01614579107-435.9446090074883531.92846321642354.016145791066
6836403669.2295794898548.45925993996653562.3111605701829.2295794898509
6936903275.09028167301512.2158604030443592.69385792394-414.909718326986
7038703823.01750950048300.0343080720323616.94818242749-46.9824904995203
7138104089.83406850368-111.0365754347133641.20250693103279.83406850368
7234303579.76190112187-363.0483729705023643.28647184863149.76190112187
7339103925.09660000431249.532963229463645.3704367662315.096600004309
7438003960.69861801415-3.213074806164923642.51445679202160.698618014149
7541404403.30067425134237.0408489308553639.6584768178263.300674251343
7633503386.51202435619-328.7518629674473642.2398386112636.5120243561892
7733603350.72293078071-275.5441311854223644.82120040472-9.27706921929257
7833102818.05318233055170.2554269734363631.69139069601-491.946817669451
7928502517.38302802017-435.9446090074883618.56158098731-332.616971979825
8036303609.3144673045948.45925993996653602.22627275544-20.6855326954101
8143404581.89317507338512.2158604030443585.89096452357241.893175073383
8242604633.92536981503300.0343080720323586.04032211294373.925369815027
8336903904.8468957324-111.0365754347133586.18967970231214.846895732405
8429902739.9617609703-363.0483729705023603.0866120002-250.038239029696
8536203370.48349247245249.532963229463619.98354429809-249.516507527548
8635903565.13592068896-3.213074806164923618.07715411721-24.8640793110403
8739404026.78838713282237.0408489308553616.1707639363286.7883871328218
8829702686.36125256857-328.7518629674473582.39061039887-283.638747431427
8934703666.933674324-275.5441311854223548.61045686142196.933674323998
9043104940.58515589294170.2554269734363509.15941713362630.585155892945
9130603086.23623160168-435.9446090074883469.7083774058126.2362316016752
9234803479.5982650445648.45925993996653431.94247501547-0.401734955440588
9341904473.60756697182512.2158604030443394.17657262513283.607566971822
9434703283.99579366846300.0343080720323355.96989825951-186.004206331543
9526502093.27335154083-111.0365754347133317.76322389389-556.726648459174
9626202313.34629632736-363.0483729705023289.70207664314-306.653703672638
9736203728.82610737815249.532963229463261.64092939239108.826107378147
9830902916.94622106142-3.213074806164923266.26685374475-173.053778938583
9936203732.06637297204237.0408489308553270.8927780971112.066372972042
10028202679.21194130775-328.7518629674473289.53992165969-140.788058692247
10130603087.35706596314-275.5441311854223308.1870652222927.3570659631364
10236003705.50158826302170.2554269734363324.24298476355105.501588263017
10329402975.64570470268-435.9446090074883340.2989043048135.6457047026811
10435503712.6296163620548.45925993996653338.91112369798162.629616362049
10545905330.2607965058512.2158604030443337.52334309116740.260796505795
10631202604.63349693276300.0343080720323335.33219499521-515.36650306724
10728002377.89552853546-111.0365754347133333.14104689925-422.104471464542
10833803765.79765341003-363.0483729705023357.25071956047385.797653410033
10934903349.10664454886249.532963229463381.36039222168-140.893355451143
11029402474.00463615924-3.213074806164923409.20843864693-465.995363840764
11135003325.90266599697237.0408489308553437.05648507217-174.097334003029
11229802822.15142800198-328.7518629674473466.60043496546-157.848571998018
11330402859.39974632667-275.5441311854223496.14438485876-180.600253673334
11441604619.18099059602170.2554269734363530.56358243055459.180990596017
11531103090.96182900515-435.9446090074883564.98278000234-19.0381709948492
11638904127.4991689218948.45925993996653604.04157113815237.499168921886



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')