Home » date » 2009 » Nov » 20 »

*The author of this computation has been verified*
R Software Module: /rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Fri, 20 Nov 2009 11:48:57 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p.htm/, Retrieved Fri, 20 Nov 2009 19:49:58 +0100
 
BibTeX entries for LaTeX users:
@Manual{KEY,
    author = {{YOUR NAME}},
    publisher = {Office for Research Development and Education},
    title = {Statistical Computations at FreeStatistics.org, URL http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p.htm/},
    year = {2009},
}
@Manual{R,
    title = {R: A Language and Environment for Statistical Computing},
    author = {{R Development Core Team}},
    organization = {R Foundation for Statistical Computing},
    address = {Vienna, Austria},
    year = {2009},
    note = {{ISBN} 3-900051-07-0},
    url = {http://www.R-project.org},
}
 
Original text written by user:
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
2187 18.8 1855 2218 1852 18.2 2187 1855 1570 18 1852 2187 1851 19 1570 1852 1954 20.7 1851 1570 1828 21.2 1954 1851 2251 20.7 1828 1954 2277 19.6 2251 1828 2085 18.6 2277 2251 2282 18.7 2085 2277 2266 23.8 2282 2085 1878 24.9 2266 2282 2267 24.8 1878 2266 2069 23.8 2267 1878 1746 22.3 2069 2267 2299 21.7 1746 2069 2360 20.7 2299 1746 2214 19.7 2360 2299 2825 18.4 2214 2360 2355 17.4 2825 2214 2333 17 2355 2825 3016 18 2333 2355 2155 23.8 3016 2333 2172 25.5 2155 3016 2150 25.6 2172 2155 2533 23.7 2150 2172 2058 22 2533 2150 2160 21.3 2058 2533 2260 20.7 2160 2058 2498 20.4 2260 2160 2695 20.3 2498 2260 2799 20.4 2695 2498 2946 19.8 2799 2695 2930 19.5 2946 2799 2318 23.1 2930 2946 2540 23.5 2318 2930 2570 23.5 2540 2318 2669 22.9 2570 2540 2450 21.9 2669 2570 2842 21.5 2450 2669 3440 20.5 2842 2450 2678 20.2 3440 2842 2981 19.4 2678 3440 2260 19.2 2981 2678 2844 18.8 2260 2981 2546 18.8 2844 2260 2456 22.6 2546 2844 2295 23.3 2456 2546 2379 23 2295 2456 2479 21 etc...
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Y[t] = -354.405794860257 + 29.7764909584763X[t] + 0.290728283519998Y1[t] + 0.417952030129352Y2[t] + 349.124779045002M1[t] + 399.919848770249M2[t] + 18.1139165012463M3[t] + 433.072144216138M4[t] + 677.964093127146M5[t] + 325.673309002917M6[t] + 672.482518326726M7[t] + 384.104420017886M8[t] + 406.540579208735M9[t] + 707.44158962931M10[t] + 52.8413553507744M11[t] + 1.93405432247590t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)-354.405794860257656.464213-0.53990.5921370.296069
X29.776490958476323.7071881.2560.2160540.108027
Y10.2907282835199980.1409162.06310.0453170.022659
Y20.4179520301293520.1455592.87140.0063790.003189
M1349.124779045002165.3782872.11110.040760.02038
M2399.919848770249184.3404752.16950.0357560.017878
M318.1139165012463187.0112430.09690.9232980.461649
M4433.072144216138185.2055372.33830.0242060.012103
M5677.964093127146213.7765343.17140.0028330.001417
M6325.673309002917205.2201721.58690.1200260.060013
M7672.482518326726197.4076673.40660.001460.00073
M8384.104420017886224.1885491.71330.0940290.047015
M9406.540579208735207.3128691.9610.0565320.028266
M10707.44158962931218.7014783.23470.0023750.001188
M1152.8413553507744180.6311290.29250.7713160.385658
t1.934054322475902.327450.8310.4106870.205343


Multiple Linear Regression - Regression Statistics
Multiple R0.824472354264483
R-squared0.679754662946419
Adjusted R-squared0.565381328284426
F-TEST (value)5.94329670421251
F-TEST (DF numerator)15
F-TEST (DF denominator)42
p-value2.32630427787761e-06
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation231.92820960305
Sum Squared Residuals2259209.16520640


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
121872022.76963728308164.230362716923
218522002.43806994740-150.438069947396
315701657.97699283292-87.9769928329201
418511882.64645978279-31.6464597827909
519542143.92467281833-189.924672818327
618281955.84572216472-127.845722164720
722512296.11803571157-45.1180357115703
822772047.23595980354229.764040196457
920852226.18232647463-141.182326474627
1022822487.04196266105-205.041962661050
1122661963.26256866182302.737431338177
1218782022.79430508701-144.794305087011
1322672251.3856828708115.6143171291875
1420692225.26623055915-156.266230559150
1517461905.74875575827-159.748755758267
1622992128.11540567798170.884594322023
1723602370.93915300776-10.9391530077634
1822142239.66783020379-25.6678302037859
1928252532.75040004802292.249599951978
2023552333.1438499350121.8561500649853
2123332464.32986421958-131.329864219584
2230162594.10794352288421.892056477123
2321552303.51788410729-148.517884107292
2421722338.37480217603-166.374802176033
2521502337.49696751783-187.496967517826
2625332334.35992101920198.640078980798
2720582006.0219963685851.9780036314203
2821602424.05042760256-264.050427602557
2922602484.13760686855-224.137606868552
3024982196.55186520445301.448134795550
3126952653.3060142455841.6939857544177
3227992526.58567437929272.414325620709
3329462645.66228473909300.337715260908
3429303025.76847100549-95.7684710054936
3523182537.08495439264-219.084954392643
3625402313.47530775143226.524692248574
3725702473.2891776211896.7108223788196
3826692609.6596062881359.3403937118668
3924502241.33189835549208.668101644509
4028422624.02134090139217.978659098606
4134402863.50484571791576.495154282087
4226782841.90787798428-163.907877984282
4329813195.2303108389-214.230310838900
4422602672.44219160883-412.442191608833
4528442601.92618145004242.073818549958
4625462773.20315004551-227.203150045510
4724562391.1345928382464.865407161758
4822952210.3555849855384.6444150144698
4923792468.05853470710-89.0585347071042
5024792430.2761721861248.7238278138816
5120572069.92035668474-12.9203566847428
5222802373.16636603528-93.1663660352822
5323512502.49372158744-151.493721587444
5422762260.0267044427615.9732955572386
5525482622.59523915593-74.5952391559254
5623112422.59232427332-111.592324273318
5722012470.89934311665-269.899343116654
5827252618.87847276507106.121527234931


Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
190.02880542335475570.05761084670951140.971194576645244
200.02593962963453990.05187925926907980.97406037036546
210.0494231751733360.0988463503466720.950576824826664
220.0246676288699180.0493352577398360.975332371130082
230.01266978046828360.02533956093656720.987330219531716
240.007539267512128040.01507853502425610.992460732487872
250.1760846555981670.3521693111963330.823915344401833
260.1080746535969990.2161493071939970.891925346403001
270.06707968916913060.1341593783382610.93292031083087
280.08725519499804720.1745103899960940.912744805001953
290.4292105060705520.8584210121411040.570789493929448
300.3680345668404380.7360691336808750.631965433159562
310.3492667445116630.6985334890233260.650733255488337
320.2716552851134760.5433105702269520.728344714886524
330.3808264566137560.7616529132275110.619173543386244
340.2851404178963610.5702808357927220.714859582103639
350.276620582233660.553241164467320.72337941776634
360.1924627445251360.3849254890502720.807537255474864
370.1235980858175680.2471961716351360.876401914182432
380.1036211276666410.2072422553332810.89637887233336
390.09150906119753660.1830181223950730.908490938802463


Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level30.142857142857143NOK
10% type I error level60.285714285714286NOK
 
Charts produced by software:
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/10lovj1258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/10lovj1258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/1as2j1258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/1as2j1258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/20z4k1258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/20z4k1258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/3gbzh1258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/3gbzh1258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/4syx01258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/4syx01258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/5xq3j1258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/5xq3j1258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/6kui41258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/6kui41258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/7rmq61258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/7rmq61258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/8qg951258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/8qg951258742931.ps (open in new window)


http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/94fhe1258742931.png (open in new window)
http://www.freestatistics.org/blog/date/2009/Nov/20/t1258742986pf51h0ewn1l2v5p/94fhe1258742931.ps (open in new window)


 
Parameters (Session):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
Parameters (R input):
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by