Home » date » 2008 » Jul » 29 »

Opgave 5 centrummaten - gem. consumptieprijs tomaten - Bram Op de Beeck 2 MAR 04

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Tue, 29 Jul 2008 03:23:57 -0600
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2008/Jul/29/t1217323540lv336euo4aac6uc.htm/, Retrieved Tue, 29 Jul 2008 09:25:40 +0000
 
IsPrivate?
No (this computation is public)
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
2,1300 1,8700 2,2300 3,0000 2,1200 1,6000 1,1700 1,0200 1,2200 1,8000 2,1300 2,2100 2,3800 1,9900 1,8200 2,4700 1,9400 1,3900 1,1100 0,9700 1,3800 2,3900 1,8800 2,1100 2,1100 2,1700 2,5400 3,1300 2,2500 1,3900 1,3600 1,3300 1,6000 1,9500 2,2300 2,5300 2,3600 1,9500 2,1600 2,7600 2,0900 1,4900 1,1700 1,3000 1,2600 2,1700 2,0300 2,1800 2,6100 2,5800 3,8600 3,8100 2,4100 1,4700 1,3300 1,3800 1,5700 2,6000 2,1800 2,3600 2,2400 2,4100 2,5100 2,9800 1,8700 1,9000 1,4700 1,4500 2,7100 2,9000 2,1100 2,1800 2,2400 2,0500 2,4200 2,7700 1,9900 1,4700 1,0900 0,9300 1,3200 2,0300 2,0400 2,7800 2,8000 3,0300 3,1100 2,7500 2,7800 1,7600 1,2900 1,2800 1,4300 1,7100 1,8900 1,8400
 
Text written by user:
 
Output produced by software:


Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean2.036770833333330.062395965131805932.6426689455133
Geometric Mean1.94449089951667
Harmonic Mean1.85086901555908
Quadratic Mean2.12562809345066
Winsorized Mean ( 1 / 32 )2.036666666666670.06216112811036532.7643131419789
Winsorized Mean ( 2 / 32 )2.023541666666670.058411159706141634.6430660998142
Winsorized Mean ( 3 / 32 )2.025104166666670.0579034273884234.9738220689794
Winsorized Mean ( 4 / 32 )2.022604166666670.057124295993908835.4070738461676
Winsorized Mean ( 5 / 32 )2.024166666666670.056324495829162635.9375905077988
Winsorized Mean ( 6 / 32 )2.022916666666670.056098268390158636.060233670627
Winsorized Mean ( 7 / 32 )2.020729166666670.054504998320544137.0741992281653
Winsorized Mean ( 8 / 32 )2.015729166666670.052633236279187338.2976482003586
Winsorized Mean ( 9 / 32 )2.015729166666670.05206013408761838.7192465404366
Winsorized Mean ( 10 / 32 )2.016770833333330.051905889617751838.8543737172284
Winsorized Mean ( 11 / 32 )2.016770833333330.051560834192478639.1143949650747
Winsorized Mean ( 12 / 32 )2.018020833333330.051006023851261939.5643628136563
Winsorized Mean ( 13 / 32 )2.018020833333330.05060481128564639.8780428592516
Winsorized Mean ( 14 / 32 )2.01218750.049729796903965440.4624113765393
Winsorized Mean ( 15 / 32 )2.001250.046827944217626342.7362343881566
Winsorized Mean ( 16 / 32 )2.002916666666670.046123146724206643.4254123779348
Winsorized Mean ( 17 / 32 )1.9993750.045644702547108743.8030020665924
Winsorized Mean ( 18 / 32 )1.993750.044388449283845944.9159642241788
Winsorized Mean ( 19 / 32 )1.991770833333330.044133220071192945.130874885638
Winsorized Mean ( 20 / 32 )1.99593750.042416475749665147.055712779621
Winsorized Mean ( 21 / 32 )1.99156250.040703066860668348.92905261457
Winsorized Mean ( 22 / 32 )1.98468750.038672589097163851.3202644646711
Winsorized Mean ( 23 / 32 )1.982291666666670.038390159776823851.6354106935335
Winsorized Mean ( 24 / 32 )1.982291666666670.038390159776823851.6354106935335
Winsorized Mean ( 25 / 32 )1.982291666666670.037053031923279953.498770917616
Winsorized Mean ( 26 / 32 )2.001250.03376201865275259.2751879140638
Winsorized Mean ( 27 / 32 )2.00406250.031971608198703562.6825678440933
Winsorized Mean ( 28 / 32 )2.00406250.031971608198703562.6825678440933
Winsorized Mean ( 29 / 32 )2.00406250.023821604029340784.1279410711229
Winsorized Mean ( 30 / 32 )2.01656250.021481748742991593.8732932838119
Winsorized Mean ( 31 / 32 )2.029479166666670.0198841875992940102.064977838910
Winsorized Mean ( 32 / 32 )2.03281250.0187092851074662108.652601546426
Trimmed Mean ( 1 / 32 )2.029148936170210.059502947558240334.1016541102291
Trimmed Mean ( 2 / 32 )2.021304347826090.05642334042108735.8239043052238
Trimmed Mean ( 3 / 32 )2.020111111111110.055216178138303436.5854932235841
Trimmed Mean ( 4 / 32 )2.018295454545450.054051917259502837.3399419831055
Trimmed Mean ( 5 / 32 )2.017093023255810.052981132919104238.0719118697532
Trimmed Mean ( 6 / 32 )2.015476190476190.0519765395580238.7766520744685
Trimmed Mean ( 7 / 32 )2.014024390243900.050873093652901139.5891864565042
Trimmed Mean ( 8 / 32 )2.0128750.049959538612938840.2901038697482
Trimmed Mean ( 9 / 32 )2.012435897435900.049283979337054740.8334701155681
Trimmed Mean ( 10 / 32 )2.011973684210530.048598613703729141.3998163913911
Trimmed Mean ( 11 / 32 )2.011351351351350.047816570845281942.0638978453599
Trimmed Mean ( 12 / 32 )2.010694444444440.046952647536389342.8238778843326
Trimmed Mean ( 13 / 32 )2.009857142857140.046024339972029943.6694397807461
Trimmed Mean ( 14 / 32 )2.008970588235290.044988116519830644.655583377218
Trimmed Mean ( 15 / 32 )2.008636363636360.043902246977575345.7524728668751
Trimmed Mean ( 16 / 32 )2.0093750.043089328472077746.6327759389914
Trimmed Mean ( 17 / 32 )2.010.04221899041629947.6089072756231
Trimmed Mean ( 18 / 32 )2.0110.04123564636420148.7684849714363
Trimmed Mean ( 19 / 32 )2.012586206896550.040241677901653750.0124823774767
Trimmed Mean ( 20 / 32 )2.014464285714290.039056169709705651.5786443137481
Trimmed Mean ( 21 / 32 )2.016111111111110.037899437227813253.1963337342527
Trimmed Mean ( 22 / 32 )2.018269230769230.036762579704153454.900098061976
Trimmed Mean ( 23 / 32 )2.02120.035695583674700656.6232511679739
Trimmed Mean ( 24 / 32 )2.024583333333330.034377646040433458.8924364091745
Trimmed Mean ( 25 / 32 )2.028260869565220.032670665753182162.0820183123348
Trimmed Mean ( 26 / 32 )2.032272727272730.030742852924836166.1055345852735
Trimmed Mean ( 27 / 32 )2.0350.029050498705341370.050432546476
Trimmed Mean ( 28 / 32 )2.037750.027246471190003574.7895015758089
Trimmed Mean ( 29 / 32 )2.040789473684210.024764557277439182.4076703985094
Trimmed Mean ( 30 / 32 )2.044166666666670.023715827545976086.1941951088908
Trimmed Mean ( 31 / 32 )2.046764705882350.022918598057916689.3058423866095
Trimmed Mean ( 32 / 32 )2.04843750.022248184843502392.0721179911564
Median2.07
Midrange2.395
Midmean - Weighted Average at Xnp2.01039215686275
Midmean - Weighted Average at X(n+1)p2.01039215686275
Midmean - Empirical Distribution Function2.01039215686275
Midmean - Empirical Distribution Function - Averaging2.01039215686275
Midmean - Empirical Distribution Function - Interpolation2.01039215686275
Midmean - Closest Observation2.01039215686275
Midmean - True Basic - Statistics Graphics Toolkit2.01039215686275
Midmean - MS Excel (old versions)2.01039215686275
Number of observations96
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Jul/29/t1217323540lv336euo4aac6uc/1efte1217323431.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Jul/29/t1217323540lv336euo4aac6uc/1efte1217323431.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Jul/29/t1217323540lv336euo4aac6uc/2zucm1217323431.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2008/Jul/29/t1217323540lv336euo4aac6uc/2zucm1217323431.ps (open in new window)


 
Parameters (Session):
 
Parameters (R input):
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

  • personalize online software applications according to your needs
  • enforce strict security rules with respect to the data that you upload (e.g. statistical data)
  • manage user sessions of online applications
  • alert you about important changes or upgrades in resources or applications

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by