Home » date » 2007 » Oct » 22 » attachments

Central tendancy, question 6

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Mon, 22 Oct 2007 12:59:05 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Oct/22/goutbfff5tzrglh1193083388.htm/, Retrieved Mon, 22 Oct 2007 22:03:10 +0200
 
User-defined keywords:
michael, junior, peter, yannick, gemiddelde
 
Dataseries X:
» Textbox « » Textfile « » CSV «
0.0257493744938832 0.0237478877648397 0.021734532514729 0.0198465789395556 0.0181409407214812 0.0166215258042675 0.0152701505942662 0.0140703182613428 0.0130169628370724 0.0121149909956676 0.0113755336274530 0.0108066015941988 0.0104102672587416 0.0101793297879612 0.0100957980377989 0.0101353192153298 0.0102701844619835 0.0104732151930134 0.0107193845356072 0.0109874944000426 0.0112601657760742 0.011526196109277 0.0117752995862039 0.0120023630740173 0.0122043778163178 0.0123794859228747 0.0125298799458765 0.0126567941304853 0.0127639590477691 0.0128558221765743 0.012937217037477 0.0130144421835237 0.0130890257027324 0.0131688330441186 0.0132543391742880 0.0133498482950950 0.0134562040704081 0.0135731710298020 0.0137014134900641 0.0138365601431088 0.0139761760838112 0.0141174358517317 0.014254906668871 0.0143846557028513 0.0145009100196785 0.0145991622719790 0.0146742460172555 0.0147237824554493 0.0147425838993809 0.0147280297587216 0.0146806157352704 0.0145984773988804 0.0144813558459163 0.0143309797285947 0.0141518828509622 0.0139450299536084 0.0137166291746623 0.0134705795297250 0.0132144865802642 0.0129541498747749 0.0126954985073174 0.0124458847090164 0.0122127590106538 0.0120017778516538 0.0118197530780406 0.0116707726396800 0.0115605302029674 0.0114911913408600 0.0114653295564385 0.0114847599378424 0.0115477666075857 0.0116540564540377 0.0118008984086779 0.0119849795430896 0.0122015373336842 0.0124467534622199 0.0127161972913673 0.0130032727209724 0.0133047190084541 0.0136141559586320 0.0139270942039374 0.014239355935933 0.0145468382768111 0.0148447068575053 0.0151326313986313 0.0154054385698285 0.0156627183912659 0.0159026498787941 0.0161249314936152 0.0163293765922274 0.0165157734928721 0.0166846565470461 0.0168385143727890 0.016977358744869 0.0171040905359246 0.0172187792349239 0.0173246160284153 0.0174228142653241 0.0175143229302128 0.0176023510894760 0.0176871470530748 0.0177692702667512 0.0178499332357475 0.0179306594638612 0.0180101805121891 0.0180887588131363 0.0181670326317408 0.0182426657825205 0.0183152217343903 0.018383189674388 0.0184445154323164 0.0184986869432896 0.0185417822082271 0.0185711418697827 0.0185853019135757 0.0185807007579698 0.0185546256675338 0.0185049726254956 0.0184274237550889 0.0183201309933662 0.0181815126038245 0.0180089438351744 0.0178003184355686 0.0175555885089826 0.0172750557804465 0.0169579792264604 0.0166064564640451 0.016221689059496 0.0158060406733841 0.0153625193885056 0.0148957772281856 0.0144091565224269 0.0139084949432564 0.0133979903424574 0.0128841617006653 0.0123737931848146 0.0118732217969068 0.0113881931568975 0.0109276070046339 0.010499492187601 0.0101118222886584 0.0097739816098994 0.0094955906524746 0.00928730737487212 0.00916083841819465 0.00912687379165225 0.00919703433683982 0.00937991935349045 0.00968438506916855 0.0101152973121683 0.0106742913471305 0.0113594068413920 0.0121649595096515 0.0130812991346697 0.0140954137567437 0.0151890292663688 0.0163422947029298 0.0175302199442381 0.0187253547553665 0.0198976618965236 0.0210153504000639 0.0220458127317437 0.0229581518854807 0.0237213485977124 0.0243101462873557 0.0247034605007399 0.024886670194248 0.0248523903562826 0.0246046329518060 0.0241546036192985 0.0235246397989794 0.0227469681506455 0.0218629790162297 0.0209219326696186 0.0199805985887911 0.0190973891840825 0.0183298783311204 0.0177293033734479 0.0173304254644116 0.0171442690578422 0.0171531920939682 0.0173115013737246 0.0175490373660681 0.0177851170554244 0.0179383444747054 0.0179413450399507 0.0177538738190025 0.0173787755922235 0.0168765909408637 0.0163837185740052 0.0161209786732948 0.0163772628548821 0.0174324825582754 0.0194346308279013 0.0223196274919401 0.0258175092461661 0.0295050170940449
 
Text written by user:
 
Output produced by software:


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean0.01550756217075260.00028089346636810255.2079846187324
Geometric Mean0.0150358617366249
Harmonic Mean0.0145889642845935
Quadratic Mean0.0159984095400643
Winsorized Mean ( 1 / 65 )0.01548901626607570.00027670705311312355.9762250069698
Winsorized Mean ( 2 / 65 )0.01548869201395760.00027653294481032756.0102957156921
Winsorized Mean ( 3 / 65 )0.01547692910134440.00027397891221767556.4894902898511
Winsorized Mean ( 4 / 65 )0.01547811351029160.0002736418236141256.5634057903309
Winsorized Mean ( 5 / 65 )0.01547726938449060.00027265397306463856.7652442784006
Winsorized Mean ( 6 / 65 )0.01548000949213820.0002715011280507457.0163726511115
Winsorized Mean ( 7 / 65 )0.01547272913241210.00026938301121833757.4376574915903
Winsorized Mean ( 8 / 65 )0.01547948136631430.00026695297447297657.9857984233898
Winsorized Mean ( 9 / 65 )0.01546163251132750.00026384815840699858.6004943323397
Winsorized Mean ( 10 / 65 )0.0154604617426160.00026361428637859958.6480420124572
Winsorized Mean ( 11 / 65 )0.01545059597687340.00026175615402698159.0266770777846
Winsorized Mean ( 12 / 65 )0.01541876994595760.00025617004016835260.1895910069134
Winsorized Mean ( 13 / 65 )0.01541082944955880.00025347167943945860.7990189816836
Winsorized Mean ( 14 / 65 )0.0153904151852580.00024803928247831262.0482974772503
Winsorized Mean ( 15 / 65 )0.01537435933556830.00024461218949358462.8519754775818
Winsorized Mean ( 16 / 65 )0.01536164406889410.00024234440713951363.3876566421057
Winsorized Mean ( 17 / 65 )0.01536564404446000.00023930677797663264.2089796803016
Winsorized Mean ( 18 / 65 )0.01530405216287940.00023026651379341766.4623436154912
Winsorized Mean ( 19 / 65 )0.01530345412853810.00022828074722670967.0378659368065
Winsorized Mean ( 20 / 65 )0.01522017203002110.00021563994995907570.5814114356346
Winsorized Mean ( 21 / 65 )0.01521771499837630.00021400272153295071.1099134131021
Winsorized Mean ( 22 / 65 )0.01524246091319560.00021035933084085872.4591623878422
Winsorized Mean ( 23 / 65 )0.01520595196869940.00020401179104447074.5346721914956
Winsorized Mean ( 24 / 65 )0.01516683137689140.00019958437026703475.992079723472
Winsorized Mean ( 25 / 65 )0.01512122542520720.00019482630945300477.6138780622682
Winsorized Mean ( 26 / 65 )0.01511292173232140.00019211082954694678.6677240838643
Winsorized Mean ( 27 / 65 )0.01511495416428360.00019179511157337378.8078175730836
Winsorized Mean ( 28 / 65 )0.01511450964862500.00019158170984603978.8932808918525
Winsorized Mean ( 29 / 65 )0.01511723131572590.00019086215589740979.2049699147882
Winsorized Mean ( 30 / 65 )0.01511856030643680.00019036773171408179.4176627010709
Winsorized Mean ( 31 / 65 )0.01511477642010260.00018964573289710079.7000606826401
Winsorized Mean ( 32 / 65 )0.01512894747697400.00018811022468988280.4259710067091
Winsorized Mean ( 33 / 65 )0.01512267323465960.00018702055833361980.8610206781805
Winsorized Mean ( 34 / 65 )0.01513776358570570.00018506749839726381.7959053685984
Winsorized Mean ( 35 / 65 )0.01513445275302580.00018393596419804282.2810961358852
Winsorized Mean ( 36 / 65 )0.01512815610195690.00018274314962808482.783711087094
Winsorized Mean ( 37 / 65 )0.01513636773191190.00018165547824854783.3245871682541
Winsorized Mean ( 38 / 65 )0.01515697810000260.00017961150691640384.3875671454458
Winsorized Mean ( 39 / 65 )0.01514593978483040.00017803013987650585.0751439915555
Winsorized Mean ( 40 / 65 )0.01513364172263100.00017692274269791185.538136543989
Winsorized Mean ( 41 / 65 )0.01515406845325140.00017455811047657086.8138891506018
Winsorized Mean ( 42 / 65 )0.01515915889668500.00017312558561093687.5616324599885
Winsorized Mean ( 43 / 65 )0.01515575292904330.00017142473974231388.410534861103
Winsorized Mean ( 44 / 65 )0.01513883686810010.00016984593056494789.1327617785416
Winsorized Mean ( 45 / 65 )0.01514046886444260.00016965290174020189.2437954738201
Winsorized Mean ( 46 / 65 )0.015162286262570.0001650171530892391.8830920223868
Winsorized Mean ( 47 / 65 )0.01516292855760700.00016483859792073991.9865174107947
Winsorized Mean ( 48 / 65 )0.01517723445209580.00016329034628403692.9463057521828
Winsorized Mean ( 49 / 65 )0.01515737142534150.00016155440693771193.822085776871
Winsorized Mean ( 50 / 65 )0.01516587692876220.00015868853198946295.5700877601496
Winsorized Mean ( 51 / 65 )0.01519479750250680.00015559503415136697.656056861847
Winsorized Mean ( 52 / 65 )0.01520083097755390.00015439183520498998.4561842753626
Winsorized Mean ( 53 / 65 )0.01520225749442680.00015358000871712198.985913735868
Winsorized Mean ( 54 / 65 )0.01520861450349150.000151931461614992100.101811315628
Winsorized Mean ( 55 / 65 )0.01522249203884050.000148842979684374102.272153319695
Winsorized Mean ( 56 / 65 )0.01520644350781290.000146163430987981104.037264348723
Winsorized Mean ( 57 / 65 )0.01520826425456490.000143793450477482105.764652034319
Winsorized Mean ( 58 / 65 )0.01521132079402810.000143231548390343106.200910099591
Winsorized Mean ( 59 / 65 )0.01522039703787420.000141583189265972107.501442203578
Winsorized Mean ( 60 / 65 )0.01521895717448110.000140908817491073108.005712101340
Winsorized Mean ( 61 / 65 )0.01519439624645210.000138750500423800109.508767175919
Winsorized Mean ( 62 / 65 )0.01521160140527470.000136885401421634111.12654269406
Winsorized Mean ( 63 / 65 )0.01519998890467880.000135531192708736112.151222171743
Winsorized Mean ( 64 / 65 )0.01521020850705830.000132192654652031115.060920344598
Winsorized Mean ( 65 / 65 )0.01522335503756440.000130852346064915116.339947241085
Trimmed Mean ( 1 / 65 )0.01550756217075260.00027252315508895156.9036497676351
Trimmed Mean ( 2 / 65 )0.01546850182950030.00026805577977018857.7062798002786
Trimmed Mean ( 3 / 65 )0.01542635131024860.00026337654196123658.5714703191716
Trimmed Mean ( 4 / 65 )0.01542635131024860.00025935670279696659.4792852619077
Trimmed Mean ( 5 / 65 )0.0153905177164630.00025515785789981760.317631771724
Trimmed Mean ( 6 / 65 )0.01537204195581280.00025090648879899561.2660199797685
Trimmed Mean ( 7 / 65 )0.01535267073117160.00024659438379427662.258801254694
Trimmed Mean ( 8 / 65 )0.01535267073117160.00024237141478544363.3435702174795
Trimmed Mean ( 9 / 65 )0.01531399002374330.00023824856234944464.2773659271108
Trimmed Mean ( 10 / 65 )0.01529573166212740.00023431200338677965.2793345669052
Trimmed Mean ( 11 / 65 )0.01527718776163810.00023011545507941366.3892295124893
Trimmed Mean ( 12 / 65 )0.01525923641197890.00022585795250632467.5612093470637
Trimmed Mean ( 13 / 65 )0.01524392057075390.00022200796567279568.6638451217602
Trimmed Mean ( 14 / 65 )0.01522895423068810.00021819505581712069.7951389120944
Trimmed Mean ( 15 / 65 )0.01521534952236890.00021472628900295770.8592766773859
Trimmed Mean ( 16 / 65 )0.01521534952236890.00021137455932884971.9828799202715
Trimmed Mean ( 17 / 65 )0.01519068632580990.00020800792704216173.0293625912195
Trimmed Mean ( 18 / 65 )0.01517809346115000.00020468797127172174.1523469447125
Trimmed Mean ( 19 / 65 )0.01516942334785840.00020202239357160975.0878310056326
Trimmed Mean ( 20 / 65 )0.01516057183468580.00019933413382005376.0560750140857
Trimmed Mean ( 21 / 65 )0.01515678433840160.00019759918773324376.7046894892254
Trimmed Mean ( 22 / 65 )0.01515304847160570.0001958629563670577.365565968527
Trimmed Mean ( 23 / 65 )0.01514774616847710.0001942854214025577.9664581064562
Trimmed Mean ( 24 / 65 )0.01514440022664930.00019309631849151478.4292540891446
Trimmed Mean ( 25 / 65 )0.01514314769360010.00019214908493014678.8093666910006
Trimmed Mean ( 26 / 65 )0.01514433905549620.00019146944099910979.0953322706294
Trimmed Mean ( 27 / 65 )0.01514600371732120.00019091145167148779.3352288965037
Trimmed Mean ( 28 / 65 )0.01514761043178100.00019030374478677479.5970171199372
Trimmed Mean ( 29 / 65 )0.01514928588252150.00018963385929755979.887030399726
Trimmed Mean ( 30 / 65 )0.01515087529849400.00018893279647431380.1918755304817
Trimmed Mean ( 31 / 65 )0.01515244716353970.00018818023440725380.5209283072063
Trimmed Mean ( 32 / 65 )0.01515244716353970.00018738674682948180.861893489875
Trimmed Mean ( 33 / 65 )0.01515543603703870.00018660689828591681.2158402301816
Trimmed Mean ( 34 / 65 )0.01515695219209360.00018580626011833481.5739587161412
Trimmed Mean ( 35 / 65 )0.01515782763337620.00018504384500012181.9147896184619
Trimmed Mean ( 36 / 65 )0.01515888017084570.00018426068542804282.2686626592714
Trimmed Mean ( 37 / 65 )0.01516024707273620.00018345732193790582.6363696613183
Trimmed Mean ( 38 / 65 )0.01516129782773780.00018262345139150083.0194463647263
Trimmed Mean ( 39 / 65 )0.01516148601578820.00018182340165078183.3857791578894
Trimmed Mean ( 40 / 65 )0.0151621571986720.00018102345263466183.757971566657
Trimmed Mean ( 41 / 65 )0.01516337840492860.00018018689896055484.1536121238653
Trimmed Mean ( 42 / 65 )0.01516377427379980.00017940146749956984.52424879878
Trimmed Mean ( 43 / 65 )0.01516396930367790.00017860032516823684.9044887762317
Trimmed Mean ( 44 / 65 )0.01516431464735250.00017779970078802885.2887523440287
Trimmed Mean ( 45 / 65 )0.01516538073114870.00017698786573460585.6859913429851
Trimmed Mean ( 46 / 65 )0.01516641938463890.00017605798982847586.1444538780369
Trimmed Mean ( 47 / 65 )0.01516659123458560.00017533571286039686.500296985483
Trimmed Mean ( 48 / 65 )0.01516674323529450.00017449539965049686.9177254281347
Trimmed Mean ( 49 / 65 )0.01516630830900870.00017362974355053387.348561363248
Trimmed Mean ( 50 / 65 )0.01516667872055560.00017274913282717487.795976004864
Trimmed Mean ( 51 / 65 )0.01516671197381530.00017194050444475788.2090698918953
Trimmed Mean ( 52 / 65 )0.01516554544437140.00017122558476679688.5705571689323
Trimmed Mean ( 53 / 65 )0.01516554544437140.00017045719442516188.9698172935132
Trimmed Mean ( 54 / 65 )0.0151624818701360.00016959455136812189.4042983564042
Trimmed Mean ( 55 / 65 )0.01516054740253890.00016869572805772689.86918386784
Trimmed Mean ( 56 / 65 )0.01515793711519100.00016787874658973190.2909833621441
Trimmed Mean ( 57 / 65 )0.01515793711519100.00016711894127503490.7014908037566
Trimmed Mean ( 58 / 65 )0.01515364612906960.00016638937005730991.073402849294
Trimmed Mean ( 59 / 65 )0.01515116644574420.00016552286951297791.5351847773297
Trimmed Mean ( 60 / 65 )0.01514816437076080.00016460112100747092.0295334445104
Trimmed Mean ( 61 / 65 )0.01514506521913130.00016351936539457392.6193982136991
Trimmed Mean ( 62 / 65 )0.01514288282245890.00016241007894179393.2385657412678
Trimmed Mean ( 63 / 65 )0.01513980750196490.00016122568955426293.9044363452353
Trimmed Mean ( 64 / 65 )0.01513980750196490.00015990300090650994.6811968264232
Trimmed Mean ( 65 / 65 )0.01513372049008980.00015863797912647195.397839618373
Median0.0147280297587216
Midrange0.0193159454428486
Midmean - Weighted Average at Xnp0.0151389243811849
Midmean - Weighted Average at X(n+1)p0.0151663083090087
Midmean - Empirical Distribution Function0.0151663083090087
Midmean - Empirical Distribution Function - Averaging0.0151663083090087
Midmean - Empirical Distribution Function - Interpolation0.0151663083090087
Midmean - Closest Observation0.0151391040730088
Midmean - True Basic - Statistics Graphics Toolkit0.0151663083090087
Midmean - MS Excel (old versions)0.0151663083090087
Number of observations197
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Oct/22/goutbfff5tzrglh1193083388/1jfzd1193083143.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Oct/22/goutbfff5tzrglh1193083388/1jfzd1193083143.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Oct/22/goutbfff5tzrglh1193083388/256qt1193083143.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Oct/22/goutbfff5tzrglh1193083388/256qt1193083143.ps (open in new window)


 
Parameters:
par1 = 0.15603665073 ; par2 = 0.1802905110447 ; par3 = 0.01 ;
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by