Home » date » 2007 » Nov » 30 » attachments

paper G29 central tendency suiker

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Fri, 30 Nov 2007 07:03:39 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/30/t1196430762vik8dejc3siouug.htm/, Retrieved Fri, 30 Nov 2007 14:52:44 +0100
 
User-defined keywords:
G29 paper
 
Dataseries X:
» Textbox « » Textfile « » CSV «
145,9 158,5 152,2 153,7 157,9 154,4 150,7 151,2 147,3 146,6 145,2 139,3 145,7 163,3 181,8 188,1 222,9 206,3 184,9 183,6 186,6 176,5 173,9 184,9 182,5 183,6 172,4 168,9 163,3 152,4 145,8 148,6 143,4 141,2 144,6 144,5 140,8 133,3 127,3 119,6 120,2 121,9 112,4 111 107,8 110,5 118,3 123 112,1 104,2 102,4 100,3 102,6 101,5 103,4 99,4 97,9 98 90,2 87,1 91,8 94,8 91,8 89,3 91,7 86,2 82,8 82,3 79,8 79,4 85,3 87,5 88,3 88,6 94,9 94,7 92,6 91,8 96,4 96,4 107,1 111,9 107,8 109,2 115,3 119,2 107,8 106,8 104,2 94,8 97,5 98,3 100,6 94,9 93,6 98 104,3 103,9 105,3 102,6 103,3 107,9 107,8 109,8 110,6 110,8 119,3 128,1 127,6 137,9 151,4 143,6 143,4 141,9 135,2 133,1 129,6 134,1 136,8 143,5 162,5 163,1 157,2 158,8 155,4 148,5 154,2 153,3 149,4 147,9 156 163 159,1 159,5 157,3 156,4 156,6 162,4 166,8 162,6 168,1
 
Text written by user:
 
Output produced by software:


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean129.6531914893622.6429234054055449.0567343813989
Geometric Mean125.925004380601
Harmonic Mean122.302162165636
Quadratic Mean133.371122215923
Winsorized Mean ( 1 / 47 )129.5382978723402.6153493724537849.530016615258
Winsorized Mean ( 2 / 47 )129.3156028368792.5623430900511150.4677157945699
Winsorized Mean ( 3 / 47 )129.2943262411352.5557840659061350.5889084942294
Winsorized Mean ( 4 / 47 )129.3170212765962.5391519772102350.9292166980397
Winsorized Mean ( 5 / 47 )129.3489361702132.5352361042668651.0204694357719
Winsorized Mean ( 6 / 47 )129.3319148936172.5220372828083551.2807307708008
Winsorized Mean ( 7 / 47 )129.3517730496452.5196716634569851.3367574536182
Winsorized Mean ( 8 / 47 )129.3347517730502.5047929710006151.6349068647311
Winsorized Mean ( 9 / 47 )129.3092198581562.4958139017416551.8104413826369
Winsorized Mean ( 10 / 47 )128.9829787234042.4355836752939752.9577283801742
Winsorized Mean ( 11 / 47 )128.8503546099292.3997225489984753.6938550099074
Winsorized Mean ( 12 / 47 )128.8503546099292.3682819717217054.4066779836427
Winsorized Mean ( 13 / 47 )128.5368794326242.3260433401836955.2598815387823
Winsorized Mean ( 14 / 47 )128.4574468085112.3162651683986755.4588691144194
Winsorized Mean ( 15 / 47 )128.3191489361702.2995457713872155.8019546872343
Winsorized Mean ( 16 / 47 )128.0127659574472.2432112717237557.0667451483863
Winsorized Mean ( 17 / 47 )128.1333333333332.2297442769734257.4654836684937
Winsorized Mean ( 18 / 47 )128.2482269503552.2114930986248557.9916921423368
Winsorized Mean ( 19 / 47 )128.2482269503552.2085184631934558.06980067756
Winsorized Mean ( 20 / 47 )128.1914893617022.2021637810349758.2116055425518
Winsorized Mean ( 21 / 47 )128.1914893617022.1988908711400658.2982498332165
Winsorized Mean ( 22 / 47 )128.1758865248232.197153427067958.33724898123
Winsorized Mean ( 23 / 47 )127.9475177304962.1194187283926960.3691550029514
Winsorized Mean ( 24 / 47 )127.8794326241132.1122044927947860.5431117395781
Winsorized Mean ( 25 / 47 )128.0212765957452.0860196602158761.3710786323541
Winsorized Mean ( 26 / 47 )128.0397163120572.0725156339876561.7798554627549
Winsorized Mean ( 27 / 47 )127.9439716312062.0585240206667362.1532565793262
Winsorized Mean ( 28 / 47 )127.8248226950352.0462016992839162.4693170471754
Winsorized Mean ( 29 / 47 )127.8659574468082.0376767344082262.750855073164
Winsorized Mean ( 30 / 47 )127.9723404255322.0005204759395763.9695229139948
Winsorized Mean ( 31 / 47 )128.1262411347521.9759802936675764.8418618066983
Winsorized Mean ( 32 / 47 )128.1035460992911.959889688226865.3626307994873
Winsorized Mean ( 33 / 47 )128.1737588652481.9246725389948266.595099305666
Winsorized Mean ( 34 / 47 )128.1496453900711.8790935386414468.1975871636073
Winsorized Mean ( 35 / 47 )128.1496453900711.8692926304652068.5551546619957
Winsorized Mean ( 36 / 47 )128.0219858156031.8566330313142568.9538447589613
Winsorized Mean ( 37 / 47 )128.1007092198581.8283998730305170.0616484989882
Winsorized Mean ( 38 / 47 )127.8851063829791.8020620115819770.9659853884345
Winsorized Mean ( 39 / 47 )127.9680851063831.7833123555893771.7586488453901
Winsorized Mean ( 40 / 47 )127.8262411347521.7532007623950272.910213066603
Winsorized Mean ( 41 / 47 )127.7680851063831.7476231707259173.1096309814385
Winsorized Mean ( 42 / 47 )127.6489361702131.7305358778541173.7626638105297
Winsorized Mean ( 43 / 47 )127.5574468085111.6638145507274376.6656637019684
Winsorized Mean ( 44 / 47 )127.7758865248231.5961351182825480.053301917391
Winsorized Mean ( 45 / 47 )127.8397163120571.5841911117839180.6971553880897
Winsorized Mean ( 46 / 47 )127.8723404255321.5447328903456782.7795803563926
Winsorized Mean ( 47 / 47 )127.6723404255321.5262860959167083.6490227927099
Trimmed Mean ( 1 / 47 )129.3438848920862.5695529883238250.3371152413791
Trimmed Mean ( 2 / 47 )129.1437956204382.5194477280024751.2587715891326
Trimmed Mean ( 3 / 47 )129.0540740740742.4948541319715151.728104028307
Trimmed Mean ( 4 / 47 )128.9691729323312.4704404621583152.2049306218279
Trimmed Mean ( 5 / 47 )128.8755725190842.4486409982335652.6314688890917
Trimmed Mean ( 6 / 47 )128.7720930232562.4255868128270153.0890472945689
Trimmed Mean ( 7 / 47 )128.6685039370082.4030229006610853.5444351785455
Trimmed Mean ( 8 / 47 )128.55842.3785333469557854.0494419237547
Trimmed Mean ( 9 / 47 )128.4471544715452.3540718847341154.5638199515104
Trimmed Mean ( 10 / 47 )128.3355371900832.3284418995881755.1164867857692
Trimmed Mean ( 11 / 47 )128.2588235294122.3092049695027255.5424162096065
Trimmed Mean ( 12 / 47 )128.1940170940172.2927805075794355.9120319935711
Trimmed Mean ( 13 / 47 )128.1269565217392.278466277183256.2338612622078
Trimmed Mean ( 14 / 47 )128.0876106194692.2675969882340956.4860560690807
Trimmed Mean ( 15 / 47 )128.0540540540542.2562897014082856.7542607556682
Trimmed Mean ( 16 / 47 )128.0311926605502.2452338227613257.0235453263796
Trimmed Mean ( 17 / 47 )128.0327102803742.2387136454407857.1903023600706
Trimmed Mean ( 18 / 47 )128.0247619047622.2322740015198657.3517237658079
Trimmed Mean ( 19 / 47 )128.0077669902912.2263421674668057.4968973147297
Trimmed Mean ( 20 / 47 )127.9900990099012.2193298002501157.6706080346764
Trimmed Mean ( 21 / 47 )127.9757575757582.2114407506390757.8698559022099
Trimmed Mean ( 22 / 47 )127.9608247422682.2022274516789458.1051810269247
Trimmed Mean ( 23 / 47 )127.9463157894742.1913577635254658.3867764173904
Trimmed Mean ( 24 / 47 )127.9462365591402.1861556827753558.5256748031369
Trimmed Mean ( 25 / 47 )127.9505494505492.1801011355523358.6901898099938
Trimmed Mean ( 26 / 47 )127.9460674157302.1748997935070958.8284884653989
Trimmed Mean ( 27 / 47 )127.9402298850572.1693390012026258.9765960111035
Trimmed Mean ( 28 / 47 )127.942.1633736233424159.1391143071869
Trimmed Mean ( 29 / 47 )127.9469879518072.1567335646682959.3244293351023
Trimmed Mean ( 30 / 47 )127.9518518518522.1489095074782959.5426896323807
Trimmed Mean ( 31 / 47 )127.9506329113922.1425768938929259.7181054626771
Trimmed Mean ( 32 / 47 )127.9402597402602.1365534780722359.8816088870838
Trimmed Mean ( 33 / 47 )127.9306666666672.1299545089532360.0626286284106
Trimmed Mean ( 34 / 47 )127.9164383561642.1246165503251760.2068351282431
Trimmed Mean ( 35 / 47 )127.9028169014082.1217034762593460.2830783531104
Trimmed Mean ( 36 / 47 )127.8884057971012.1176646487347360.3912455513259
Trimmed Mean ( 37 / 47 )127.8805970149252.1125898574858160.5326190324116
Trimmed Mean ( 38 / 47 )127.8676923076922.1079737670015960.6590529300434
Trimmed Mean ( 39 / 47 )127.8666666666672.1036067337605160.7844919939411
Trimmed Mean ( 40 / 47 )127.8606557377052.0985400580754160.9283845908414
Trimmed Mean ( 41 / 47 )127.8627118644072.0939531911472861.0628319701601
Trimmed Mean ( 42 / 47 )127.8684210526322.0867528196141361.2762660966603
Trimmed Mean ( 43 / 47 )127.8818181818182.0778551666716161.5451068164025
Trimmed Mean ( 44 / 47 )127.9018867924532.0735680014524761.6820315045668
Trimmed Mean ( 45 / 47 )127.9098039215692.0747052800894661.6520356645805
Trimmed Mean ( 46 / 47 )127.9142857142862.0742202042652861.6686142827322
Trimmed Mean ( 47 / 47 )127.9170212765962.0757182124712861.6254270488391
Median128.1
Midrange151.15
Midmean - Weighted Average at Xnp127.527142857143
Midmean - Weighted Average at X(n+1)p127.902816901408
Midmean - Empirical Distribution Function127.902816901408
Midmean - Empirical Distribution Function - Averaging127.902816901408
Midmean - Empirical Distribution Function - Interpolation127.902816901408
Midmean - Closest Observation127.548611111111
Midmean - True Basic - Statistics Graphics Toolkit127.902816901408
Midmean - MS Excel (old versions)127.902816901408
Number of observations141
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430762vik8dejc3siouug/1yoz61196431416.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430762vik8dejc3siouug/1yoz61196431416.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430762vik8dejc3siouug/209q91196431416.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430762vik8dejc3siouug/209q91196431416.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by