Home » date » 2007 » Nov » 30 » attachments

Paper G29 central tendency oliezaden

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Fri, 30 Nov 2007 07:00:47 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/30/t1196430607dadn7rqtn1cn8y2.htm/, Retrieved Fri, 30 Nov 2007 14:50:09 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
145,3 143,6 142,8 155,9 156,2 149,8 152,7 155,5 159,3 143 141,4 142,8 146,4 152,3 164,3 168 171,3 162,7 150,2 142,5 138,2 138 145,1 138,4 131,8 130,8 126,3 123 124 120,8 122,1 106,5 104,3 108,7 113,8 112,5 106,1 98,4 96 99,3 97,5 95,3 88 94,7 99,4 98,9 96,4 95,3 99,5 101,6 103,9 106,6 108,3 102 93,8 91,6 97,7 94,8 98 103,8 97,8 91,2 89,3 87,5 90,4 94,2 102,2 101,3 96 90,8 93,2 90,9 91,1 90,2 94,3 96 99 103,3 113,1 112,8 112,1 107,4 111 110,5 110,8 112,4 111,5 116,2 122,5 121,3 113,9 110,7 120,8 141,1 147,4 148 158,1 165 187 190,3 182,4 168,8 151,2 120,1 112,5 106,2 107,1 108,5 106,5 108,3 125,6 124 127,2 136,9 135,8 124,3 115,4 113,6 114,4 118,4 117 116,5 115,4 113,6 117,4 116,9 116,4 111,1 110,2 118,9 131,8 130,6 138,3 148,4 148,7 144,3 152,5 162,9 167,2 166,5 185,6
 
Text written by user:
G29 paper
 
Output produced by software:


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean122.5333333333332.1013385676162358.3120374896729
Geometric Mean120.158120840437
Harmonic Mean117.941573741679
Quadratic Mean125.030416724823
Winsorized Mean ( 1 / 47 )122.5134751773052.0956509749895958.4608203557911
Winsorized Mean ( 2 / 47 )122.5120567375892.0891953132527458.6407866992796
Winsorized Mean ( 3 / 47 )122.4631205673762.0726677940631559.08477997205
Winsorized Mean ( 4 / 47 )122.153900709222.0119651001106760.7137274411474
Winsorized Mean ( 5 / 47 )122.0794326241131.9952221343704561.1858852812062
Winsorized Mean ( 6 / 47 )122.0496453900711.9890902096998261.3595325113433
Winsorized Mean ( 7 / 47 )122.0198581560281.9814704506416761.5804581473894
Winsorized Mean ( 8 / 47 )121.9858156028371.9744060401313861.7835506594782
Winsorized Mean ( 9 / 47 )121.9156028368791.9563303021091062.3185168197023
Winsorized Mean ( 10 / 47 )121.9794326241131.9362448427077562.9979380363543
Winsorized Mean ( 11 / 47 )121.9170212765961.9144274283361063.6832817332536
Winsorized Mean ( 12 / 47 )121.9340425531911.9082747423224163.8975299776779
Winsorized Mean ( 13 / 47 )121.6297872340431.8607146780610565.3672423118554
Winsorized Mean ( 14 / 47 )121.5503546099291.8394898813034866.078294773656
Winsorized Mean ( 15 / 47 )121.3588652482271.8101361211310367.0440547710844
Winsorized Mean ( 16 / 47 )121.3815602836881.7995537561330767.4509221355609
Winsorized Mean ( 17 / 47 )121.3333333333331.7929677069718367.6717895484324
Winsorized Mean ( 18 / 47 )121.0652482269501.7361202322437569.7332166162747
Winsorized Mean ( 19 / 47 )121.0382978723401.7326186059290269.8585929171876
Winsorized Mean ( 20 / 47 )121.0099290780141.7289452204871469.9906090974466
Winsorized Mean ( 21 / 47 )120.9056737588651.7017973611476171.0458698075148
Winsorized Mean ( 22 / 47 )120.9212765957451.6646216861998472.641896713358
Winsorized Mean ( 23 / 47 )120.8886524822691.6531738815603673.1251889657052
Winsorized Mean ( 24 / 47 )120.7184397163121.6282783477488174.1386998624727
Winsorized Mean ( 25 / 47 )120.7007092198581.6182027181209574.589362549097
Winsorized Mean ( 26 / 47 )120.7007092198581.6018411697747475.3512342530388
Winsorized Mean ( 27 / 47 )120.6815602836881.5784223212280276.4570791103596
Winsorized Mean ( 28 / 47 )120.5028368794331.5526253033446477.6123103364653
Winsorized Mean ( 29 / 47 )120.3382978723401.5197723058990079.1817941445878
Winsorized Mean ( 30 / 47 )120.3170212765961.5126836118873579.538788105517
Winsorized Mean ( 31 / 47 )120.1631205673761.4900410401274080.6441684029734
Winsorized Mean ( 32 / 47 )120.4127659574471.4319419689695184.0905347889909
Winsorized Mean ( 33 / 47 )120.3425531914891.4090736622533685.4054379236928
Winsorized Mean ( 34 / 47 )120.3907801418441.3944105750396486.338114682199
Winsorized Mean ( 35 / 47 )120.4404255319151.3897449631268286.6636891857717
Winsorized Mean ( 36 / 47 )120.6446808510641.3549221408003989.0417812345995
Winsorized Mean ( 37 / 47 )120.4872340425531.3098627703955591.984623706931
Winsorized Mean ( 38 / 47 )120.4333333333331.2982037573546092.7692071841984
Winsorized Mean ( 39 / 47 )119.7971631205671.2043849062040899.4675061962858
Winsorized Mean ( 40 / 47 )120.2794326241131.15536961358802104.104722168159
Winsorized Mean ( 41 / 47 )120.2794326241131.14958453255860104.628610787248
Winsorized Mean ( 42 / 47 )120.3092198581561.13516058998493105.984317038132
Winsorized Mean ( 43 / 47 )119.9737588652481.09801730008077109.263996893694
Winsorized Mean ( 44 / 47 )119.6617021276601.05766592231020113.137522542363
Winsorized Mean ( 45 / 47 )118.5446808510640.907026732208118130.695906351593
Winsorized Mean ( 46 / 47 )118.6425531914890.898241123840255132.083190184230
Winsorized Mean ( 47 / 47 )118.6092198581560.836840381689823141.734579799614
Trimmed Mean ( 1 / 47 )122.2978417266192.0591939967371759.3911219245985
Trimmed Mean ( 2 / 47 )122.0759124087592.0192237150149960.456853542775
Trimmed Mean ( 3 / 47 )121.8481481481481.9790363032850461.5694355610809
Trimmed Mean ( 4 / 47 )121.6308270676691.9415091915361262.6475669535383
Trimmed Mean ( 5 / 47 )121.4900763358781.9192693042706963.3001716150736
Trimmed Mean ( 6 / 47 )121.3612403100781.8990601989258563.9059469408722
Trimmed Mean ( 7 / 47 )121.2338582677171.8781172380992564.5507403948922
Trimmed Mean ( 8 / 47 )121.10721.8564847726194165.234685350596
Trimmed Mean ( 9 / 47 )120.9813008130081.8338344036499065.9717696277361
Trimmed Mean ( 10 / 47 )120.8603305785121.8117638542459566.708655377615
Trimmed Mean ( 11 / 47 )120.7277310924371.7903096246222467.4339954564624
Trimmed Mean ( 12 / 47 )120.5974358974361.7696301078043168.148386131986
Trimmed Mean ( 13 / 47 )120.4608695652171.7474041750863968.9370388846999
Trimmed Mean ( 14 / 47 )120.3486725663721.7290387754429469.6043803503141
Trimmed Mean ( 15 / 47 )120.2396396396401.7111602068563670.2679031208518
Trimmed Mean ( 16 / 47 )120.1431192660551.6947277717900670.8922820915086
Trimmed Mean ( 17 / 47 )120.0411214953271.6774232666508871.5628093885923
Trimmed Mean ( 18 / 47 )119.9390476190481.6586710197378372.3103292888094
Trimmed Mean ( 19 / 47 )119.8533980582521.6440269770255872.9023305171639
Trimmed Mean ( 20 / 47 )119.7663366336631.6277399001772873.5783011896551
Trimmed Mean ( 21 / 47 )119.6777777777781.6096067728532174.3521832761896
Trimmed Mean ( 22 / 47 )119.5927835051551.5919708652715575.1224699610033
Trimmed Mean ( 23 / 47 )119.5031578947371.5757971037074675.8366401445819
Trimmed Mean ( 24 / 47 )119.4118279569891.5584436872040076.6224849427996
Trimmed Mean ( 25 / 47 )119.3274725274731.5412457625082077.4227416744235
Trimmed Mean ( 26 / 47 )119.2404494382021.5224777523454878.3199946629791
Trimmed Mean ( 27 / 47 )119.1494252873561.5025567389322879.2977876975373
Trimmed Mean ( 28 / 47 )119.0552941176471.4820612736044680.3308852596206
Trimmed Mean ( 29 / 47 )118.9674698795181.461246985211281.41503187589
Trimmed Mean ( 30 / 47 )118.8851851851851.4407914396487682.5138058941876
Trimmed Mean ( 31 / 47 )118.81.4176657034498983.7997277573268
Trimmed Mean ( 32 / 47 )118.7194805194811.3933368914096985.2051512103204
Trimmed Mean ( 33 / 47 )118.621.3713792623053286.496859957323
Trimmed Mean ( 34 / 47 )118.5191780821921.3481605055067687.9117713344091
Trimmed Mean ( 35 / 47 )118.4098591549301.3222810528836989.5496905871078
Trimmed Mean ( 36 / 47 )118.2913043478261.2919082866118491.5632367821223
Trimmed Mean ( 37 / 47 )118.1537313432841.2598778923950893.7818911312658
Trimmed Mean ( 38 / 47 )118.0169230769231.2278196928803796.1190993769323
Trimmed Mean ( 39 / 47 )117.8746031746031.1907197224878798.9944156869406
Trimmed Mean ( 40 / 47 )117.7606557377051.16079226451508101.448518686415
Trimmed Mean ( 41 / 47 )117.6101694915251.13037519028331104.045250198784
Trimmed Mean ( 42 / 47 )117.4491228070181.09350475498133107.406138173604
Trimmed Mean ( 43 / 47 )117.2745454545451.04976257755639111.715303976195
Trimmed Mean ( 44 / 47 )117.1075471698111.00257596035854116.806657849577
Trimmed Mean ( 45 / 47 )116.9470588235290.951590424916908122.896422411713
Trimmed Mean ( 46 / 47 )116.8448979591840.920062022941164126.996762224426
Trimmed Mean ( 47 / 47 )116.7276595744680.880851398999789132.516857788968
Median115.4
Midrange138.9
Midmean - Weighted Average at Xnp118.061428571429
Midmean - Weighted Average at X(n+1)p118.748611111111
Midmean - Empirical Distribution Function118.748611111111
Midmean - Empirical Distribution Function - Averaging118.748611111111
Midmean - Empirical Distribution Function - Interpolation118.748611111111
Midmean - Closest Observation118.519178082192
Midmean - True Basic - Statistics Graphics Toolkit118.748611111111
Midmean - MS Excel (old versions)118.748611111111
Number of observations141
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430607dadn7rqtn1cn8y2/1o5ya1196431244.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430607dadn7rqtn1cn8y2/1o5ya1196431244.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430607dadn7rqtn1cn8y2/2doos1196431244.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430607dadn7rqtn1cn8y2/2doos1196431244.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by