Home » date » 2007 » Nov » 30 » attachments

Paper central tendency graan

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Fri, 30 Nov 2007 06:58:34 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/30/t1196430501l1tflxj2uub5r6n.htm/, Retrieved Fri, 30 Nov 2007 14:48:21 +0100
 
User-defined keywords:
G29 paper
 
Dataseries X:
» Textbox « » Textfile « » CSV «
174,1 180,4 182,6 207,1 213,7 186,5 179,1 168,3 156,5 144,3 138,9 137,8 136,3 140,3 149,1 149,2 140,4 129 124,7 130,8 130,1 133,2 130,1 126,6 124,8 125,3 126,9 120,1 118,7 117,7 113,4 107,5 107,6 114,3 114,9 111,2 109,9 108,6 109,2 106,4 103,7 103 96,9 104,7 102,2 99 95,8 94,5 102,7 103,2 105,6 103,9 107,2 100,7 92,1 90,3 93,4 98,5 100,8 102,3 104,7 101,1 101,4 99,5 98,4 96,3 100,7 101,2 100,3 97,8 97,4 98,6 99,7 99 98,1 97 98,5 103,8 114,4 124,5 134,2 131,8 125,6 119,9 114,9 115,5 112,5 111,4 115,3 110,8 103,7 111,1 113 111,2 117,6 121,7 127,3 129,8 137,1 141,4 137,4 130,7 117,2 110,8 111,4 108,2 108,8 110,2 109,5 109,5 116 111,2 112,1 114 119,1 114,1 115,1 115,4 110,8 116 119,2 126,5 127,8 131,3 140,3 137,3 143 134,5 139,9 159,3 170,4 175 175,8 180,9 180,3 169,6 172,3 184,8 177,7 184,6 211,4
 
Text written by user:
 
Output produced by software:


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean124.8489361702132.3111082831566954.0212404066522
Geometric Mean122.241326366027
Harmonic Mean119.978668092102
Quadratic Mean127.808559464304
Winsorized Mean ( 1 / 47 )124.8453900709222.3053520117000254.1545887297523
Winsorized Mean ( 2 / 47 )124.8028368794332.2874956205520954.5587216684206
Winsorized Mean ( 3 / 47 )124.3879432624112.1840989496962256.9516061896884
Winsorized Mean ( 4 / 47 )124.3765957446812.1708699712126357.2934341503674
Winsorized Mean ( 5 / 47 )124.3872340425532.1678073961616057.3792829855632
Winsorized Mean ( 6 / 47 )124.3276595744682.1487757421031757.8597650459228
Winsorized Mean ( 7 / 47 )124.2482269503552.1321392624985458.273973532458
Winsorized Mean ( 8 / 47 )124.2425531914892.1247094643849958.4750787220934
Winsorized Mean ( 9 / 47 )124.2617021276602.1212151846880758.5804321148741
Winsorized Mean ( 10 / 47 )124.1978723404262.1033604290066859.0473561390896
Winsorized Mean ( 11 / 47 )124.1120567375892.081063722230859.6387584924822
Winsorized Mean ( 12 / 47 )123.9588652482272.0508396656656260.4429821226395
Winsorized Mean ( 13 / 47 )123.8851063829792.0375723422293160.8003474602702
Winsorized Mean ( 14 / 47 )123.8056737588652.0207384199730261.2675408826632
Winsorized Mean ( 15 / 47 )123.6567375886521.9831548211230562.3535471217654
Winsorized Mean ( 16 / 47 )123.4411347517731.9456808141936863.4436716707459
Winsorized Mean ( 17 / 47 )123.4049645390071.9237144093958164.1493165182277
Winsorized Mean ( 18 / 47 )123.2645390070921.8931123852784365.1121084863447
Winsorized Mean ( 19 / 47 )122.1326241134751.6868805092646372.4014673491707
Winsorized Mean ( 20 / 47 )121.7921985815601.6199594322794075.1822521939269
Winsorized Mean ( 21 / 47 )120.7049645390071.4606293234451282.6390122404952
Winsorized Mean ( 22 / 47 )120.7049645390071.4569316295880082.848750131906
Winsorized Mean ( 23 / 47 )119.9709219858161.3469318728572189.0697773238704
Winsorized Mean ( 24 / 47 )119.7666666666671.3170038556096490.938736554592
Winsorized Mean ( 25 / 47 )119.5184397163121.2781975035145293.5054554461927
Winsorized Mean ( 26 / 47 )119.4815602836881.2410137384918596.2773872502725
Winsorized Mean ( 27 / 47 )119.4815602836881.2368074250764796.6048213013439
Winsorized Mean ( 28 / 47 )119.5609929078011.2289742401400197.2851903667085
Winsorized Mean ( 29 / 47 )119.5404255319151.2130562851265098.5448301102111
Winsorized Mean ( 30 / 47 )119.3702127659571.18361352534807100.852356119244
Winsorized Mean ( 31 / 47 )119.2382978723401.14465794148892104.169371084991
Winsorized Mean ( 32 / 47 )119.1475177304961.13418269988464105.051432844651
Winsorized Mean ( 33 / 47 )119.1475177304961.12921935608828105.513173404355
Winsorized Mean ( 34 / 47 )119.1234042553191.12134970702663106.232162463561
Winsorized Mean ( 35 / 47 )119.1234042553191.07958801022968110.341540593782
Winsorized Mean ( 36 / 47 )118.6638297872341.02817318476414115.412297797336
Winsorized Mean ( 37 / 47 )118.8212765957450.996859205755726119.195645593367
Winsorized Mean ( 38 / 47 )118.7673758865250.947065802197447125.405621880710
Winsorized Mean ( 39 / 47 )118.6014184397160.884838513716046134.037360039435
Winsorized Mean ( 40 / 47 )118.5446808510640.86197355225914137.527051195911
Winsorized Mean ( 41 / 47 )118.4283687943260.844014821845307140.315508364416
Winsorized Mean ( 42 / 47 )118.5773049645390.82466865336097143.787816453642
Winsorized Mean ( 43 / 47 )118.5163120567380.794614359202969149.149471921970
Winsorized Mean ( 44 / 47 )118.5787234042550.789070354805877150.276490153311
Winsorized Mean ( 45 / 47 )118.6106382978720.767855803574961154.469937904550
Winsorized Mean ( 46 / 47 )118.4475177304960.732281816048841161.751275444202
Winsorized Mean ( 47 / 47 )118.0475177304960.69153631409972170.703280975457
Trimmed Mean ( 1 / 47 )124.4582733812952.2409162547510855.539011383145
Trimmed Mean ( 2 / 47 )124.0598540145992.1695357620402657.1826729871147
Trimmed Mean ( 3 / 47 )123.6718518518522.1008655069332958.8670961771276
Trimmed Mean ( 4 / 47 )123.4187969924812.0673852971102459.6980142816116
Trimmed Mean ( 5 / 47 )123.161068702292.0345897806382260.5336121680785
Trimmed Mean ( 6 / 47 )122.8930232558141.9991383760672761.4729949297311
Trimmed Mean ( 7 / 47 )122.6275590551181.9642727154201762.4289886493115
Trimmed Mean ( 8 / 47 )122.36641.929074972706563.4326823639827
Trimmed Mean ( 9 / 47 )122.0975609756101.891367153675464.555187361874
Trimmed Mean ( 10 / 47 )121.8173553719011.8499704702006165.848270193573
Trimmed Mean ( 11 / 47 )121.5352941176471.8067872748912367.2659675029889
Trimmed Mean ( 12 / 47 )121.2529914529911.7620954041024068.81181982014
Trimmed Mean ( 13 / 47 )120.9765217391301.7167663047968170.4676701780027
Trimmed Mean ( 14 / 47 )120.6973451327431.6678712009277072.3661066067989
Trimmed Mean ( 15 / 47 )120.4153153153151.6152788093002074.5476970427685
Trimmed Mean ( 16 / 47 )120.1357798165141.5613588720226876.9430923083574
Trimmed Mean ( 17 / 47 )119.8635514018691.5057969408091079.6014045143855
Trimmed Mean ( 18 / 47 )119.5838095238101.4456110941565882.7219782742322
Trimmed Mean ( 19 / 47 )119.3038834951461.3812475857248886.374003276563
Trimmed Mean ( 20 / 47 )119.0960396039601.3378946966746989.017498836023
Trimmed Mean ( 21 / 47 )118.9040404040401.2976636627557391.6293210765685
Trimmed Mean ( 22 / 47 )118.7793814432991.2728478384024593.3178168353404
Trimmed Mean ( 23 / 47 )118.6494736842111.2450375167462895.2979103748484
Trimmed Mean ( 24 / 47 )118.5623655913981.2267433654445596.6480593505662
Trimmed Mean ( 25 / 47 )118.4846153846151.2092802762439597.9794491915733
Trimmed Mean ( 26 / 47 )118.4191011235961.1936661199581399.2062178389964
Trimmed Mean ( 27 / 47 )118.3528735632181.17970547010915100.324086445295
Trimmed Mean ( 28 / 47 )118.2835294117651.16393980691200101.623407593196
Trimmed Mean ( 29 / 47 )118.2060240963861.14641393551437103.109374750708
Trimmed Mean ( 30 / 47 )118.1259259259261.12782673371819104.737653749784
Trimmed Mean ( 31 / 47 )118.0518987341771.10967370187511106.384334903760
Trimmed Mean ( 32 / 47 )117.9818181818181.09302412309748107.940726731148
Trimmed Mean ( 33 / 47 )117.9133333333331.07468886481444109.718577342562
Trimmed Mean ( 34 / 47 )117.8410958904111.05360480652976111.845632404186
Trimmed Mean ( 35 / 47 )117.7661971830991.02963521047397114.376621919221
Trimmed Mean ( 36 / 47 )117.6869565217391.00661476575219116.913600441573
Trimmed Mean ( 37 / 47 )117.6298507462690.98642072549954119.249167931563
Trimmed Mean ( 38 / 47 )117.560.966147683407587121.679120096182
Trimmed Mean ( 39 / 47 )117.4888888888890.94844608707486123.875136910777
Trimmed Mean ( 40 / 47 )117.4229508196720.935444704281569125.526340875332
Trimmed Mean ( 41 / 47 )117.3559322033900.92238310762517127.231224458937
Trimmed Mean ( 42 / 47 )117.2912280701750.908613339042345129.088164382219
Trimmed Mean ( 43 / 47 )117.2127272727270.893760845034922131.145516078350
Trimmed Mean ( 44 / 47 )117.1320754716980.879506943879172133.179250359381
Trimmed Mean ( 45 / 47 )117.0411764705880.861791005420816135.811554929651
Trimmed Mean ( 46 / 47 )116.9408163265310.842402613355184138.818202214224
Trimmed Mean ( 47 / 47 )116.8425531914890.823968784384272141.804587025469
Median115.3
Midrange152
Midmean - Weighted Average at Xnp117.501428571429
Midmean - Weighted Average at X(n+1)p117.766197183099
Midmean - Empirical Distribution Function117.766197183099
Midmean - Empirical Distribution Function - Averaging117.766197183099
Midmean - Empirical Distribution Function - Interpolation117.766197183099
Midmean - Closest Observation117.573611111111
Midmean - True Basic - Statistics Graphics Toolkit117.766197183099
Midmean - MS Excel (old versions)117.766197183099
Number of observations141
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430501l1tflxj2uub5r6n/1jgor1196431108.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430501l1tflxj2uub5r6n/1jgor1196431108.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430501l1tflxj2uub5r6n/2xjh41196431108.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196430501l1tflxj2uub5r6n/2xjh41196431108.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by