Home » date » 2007 » Nov » 30 » attachments

workshop paper A

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Fri, 30 Nov 2007 04:09:54 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0.htm/, Retrieved Fri, 30 Nov 2007 12:00:21 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
106,7 0 110,2 0 125,9 0 100,1 0 106,4 0 114,8 0 81,3 0 87 0 104,2 0 108 0 105 0 94,5 0 92 0 95,9 0 108,8 0 103,4 0 102,1 0 110,1 0 83,2 0 82,7 0 106,8 0 113,7 0 102,5 0 96,6 0 92,1 0 95,6 0 102,3 0 98,6 0 98,2 0 104,5 0 84 0 73,8 0 103,9 0 106 0 97,2 0 102,6 0 89 0 93,8 0 116,7 1 106,8 1 98,5 1 118,7 1 90 1 91,9 1 113,3 1 113,1 1 104,1 1 108,7 1 96,7 1 101 1 116,9 1 105,8 1 99 1 129,4 1 83 1 88,9 1 115,9 1 104,2 1 113,4 1 112,2 1 100,8 1 107,3 1 126,6 1 102,9 1 117,9 1 128,8 1 87,5 1 93,8 1 122,7 1 126,2 1 124,6 1 116,7 1 115,2 1 111,1 1 129,9 1 113,3 1 118,5 1 133,5 1 102,1 1 102,4 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
y[t] = + 100.102717391304 + 10.2278985507246x[t] -5.55753105590065M1[t] -2.35753105590062M2[t] + 12.2099120082816M3[t] -1.53294513457557M4[t] -0.147230848861288M5[t] + 14.0241977225673M6[t] -18.6472308488613M7[t] -17.3043737060041M8[t] + 5.91666666666667M9[t] + 6.65M10[t] + 2.58333333333333M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)100.1027173913042.83085135.361300
x10.22789855072461.5054926.793700
M1-5.557531055900653.720467-1.49380.139930.069965
M2-2.357531055900623.720467-0.63370.5284570.264228
M312.20991200828163.7204673.28180.001640.00082
M4-1.532945134575573.720467-0.4120.6816330.340816
M5-0.1472308488612883.720467-0.03960.9685510.484276
M614.02419772256733.7204673.76950.0003480.000174
M7-18.64723084886133.720467-5.01214e-062e-06
M8-17.30437370600413.720467-4.65111.6e-058e-06
M95.916666666666673.8592981.53310.1299610.064981
M106.653.8592981.72310.0894810.044741
M112.583333333333333.8592980.66940.5055540.252777


Multiple Linear Regression - Regression Statistics
Multiple R0.875078894705212
R-squared0.765763071958496
Adjusted R-squared0.723810189324197
F-TEST (value)18.2529309996076
F-TEST (DF numerator)12
F-TEST (DF denominator)67
p-value1.11022302462516e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation6.68450099095196
Sum Squared Residuals2993.73108436853


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1106.794.545186335403912.1548136645961
2110.297.745186335403712.4548136645963
3125.9112.31262939958613.5873706004141
4100.198.56977225672881.53022774327122
5106.499.9554865424436.44451345755693
6114.8114.1269151138720.67308488612836
781.381.455486542443-0.155486542443061
88782.79834368530024.20165631469979
9104.2106.019384057971-1.819384057971
10108106.7527173913041.24728260869565
11105102.6860507246382.31394927536232
1294.5100.102717391304-5.60271739130435
139294.5451863354037-2.5451863354037
1495.997.7451863354037-1.84518633540372
15108.8112.312629399586-3.51262939958592
16103.498.56977225672884.83022774327123
17102.199.9554865424432.14451345755693
18110.1114.126915113872-4.02691511387164
1983.281.4554865424431.74451345755694
2082.782.7983436853002-0.0983436853002035
21106.8106.0193840579710.78061594202898
22113.7106.7527173913046.94728260869566
23102.5102.686050724638-0.186050724637679
2496.6100.102717391304-3.50271739130435
2592.194.5451863354037-2.44518633540371
2695.697.7451863354037-2.14518633540373
27102.3112.312629399586-10.0126293995859
2898.698.56977225672880.0302277432712211
2998.299.955486542443-1.75548654244306
30104.5114.126915113872-9.62691511387164
318481.4554865424432.54451345755694
3273.882.7983436853002-8.99834368530021
33103.9106.019384057971-2.11938405797101
34106106.752717391304-0.752717391304345
3597.2102.686050724638-5.48605072463767
36102.6100.1027173913042.49728260869565
378994.5451863354037-5.5451863354037
3893.897.7451863354037-3.94518633540373
39116.7122.540527950311-5.84052795031056
40106.8108.797670807453-1.99767080745342
4198.5110.183385093168-11.6833850931677
42118.7124.354813664596-5.65481366459628
439091.6833850931677-1.6833850931677
4491.993.0262422360248-1.12624223602484
45113.3116.247282608696-2.94728260869566
46113.1116.980615942029-3.88061594202899
47104.1112.913949275362-8.81394927536232
48108.7110.330615942029-1.63061594202899
4996.7104.773084886128-8.07308488612834
50101107.973084886128-6.97308488612837
51116.9122.540527950311-5.64052795031056
52105.8108.797670807453-2.99767080745342
5399110.183385093168-11.1833850931677
54129.4124.3548136645965.04518633540373
558391.6833850931677-8.6833850931677
5688.993.0262422360248-4.12624223602484
57115.9116.247282608696-0.347282608695653
58104.2116.980615942029-12.7806159420290
59113.4112.9139492753620.486050724637686
60112.2110.3306159420291.86938405797101
61100.8104.773084886128-3.97308488612835
62107.3107.973084886128-0.673084886128371
63126.6122.5405279503114.05947204968943
64102.9108.797670807453-5.89767080745341
65117.9110.1833850931687.7166149068323
66128.8124.3548136645964.44518633540374
6787.591.6833850931677-4.1833850931677
6893.893.02624223602480.773757763975149
69122.7116.2472826086966.45271739130434
70126.2116.9806159420299.21938405797102
71124.6112.91394927536211.6860507246377
72116.7110.3306159420296.36938405797101
73115.2104.77308488612810.4269151138717
74111.1107.9730848861283.12691511387163
75129.9122.5405279503117.35947204968944
76113.3108.7976708074534.50232919254658
77118.5110.1833850931688.3166149068323
78133.5124.3548136645969.14518633540373
79102.191.683385093167710.4166149068323
80102.493.02624223602499.37375776397515
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/1omkz1196420976.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/1omkz1196420976.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/27kh11196420976.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/27kh11196420976.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/3jxnh1196420976.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/3jxnh1196420976.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/4jyxq1196420976.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/4jyxq1196420976.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/5etfv1196420976.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/5etfv1196420976.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/6c29v1196420976.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/6c29v1196420976.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/7y39k1196420976.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/7y39k1196420976.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/8dsxp1196420977.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/8dsxp1196420977.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/95ydf1196420977.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196420420msqbtshj6knl0g0/95ydf1196420977.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by