Home » date » 2007 » Nov » 30 » attachments

central tendency of residuals

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Fri, 30 Nov 2007 03:44:47 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/30/t1196418935xljq63we7x6ts8c.htm/, Retrieved Fri, 30 Nov 2007 11:35:35 +0100
 
User-defined keywords:
central tendency, residuals, sarima
 
Dataseries X:
» Textbox « » Textfile « » CSV «
0.00448570722258807 0.00161627008051144 -0.00148103604695934 0.00370662236561495 0.00365213590849957 -0.00111929007561087 0.00202894670871937 -0.00319537555574839 -0.000115297471801953 0.000207732752387937 -0.000193809964066644 -0.000617502855287235 0.00267917863791114 0.00101870086796636 0.00122816042981585 0.00164007142023998 -0.000425131732519528 -0.00136244733432715 0.000558705725005591 0.000315360633839379 0.00209902605197982 0.000918783548783637 0.00185127411835918 0.00296081256507189 0.000115071804741404 0.00224444271218977 0.00358967265745595 -0.000791569555137633 0.000820898909146944 0.0042654643382554 0.000352135463422806 0.00101319797453202 0.00577618519868283 -0.00317793724831984 0.00276463935659925 -0.00335592071342644 -0.00207518674583269 0.00250587076741912 0.00127015567990493 0.00582329478916602 0.00347779560993236 0.00106706078643245 -0.00208869630491994 0.00118711723817082 0.000678895704500574 -0.00133031152020092 4.66272759626643e-05 -0.00190522951870584 0.00492388039825642 -0.000982094706596713 0.00158700153242671 -0.00324114444069905 -0.00109834861765504 -0.00307957607000311 0.00246280425525008 0.000451168657026153 0.000557078701682656 -0.000667750757797388 -0.00189007898443563 0.00111563541279842 0.00235327038447162 0.00439708454751803 0.00118393590213247 -0.00548126638100145 -0.00487263830895669 0.00328381565008992 0.000385101134086802 0.00344659419526791 0.000301555401043752 -0.00262866719031730 0.00118629498011972 -0.000377642996183579 0.000626204256106537 0.0008049247836587 -0.000155132511933779 0.00321473719305704 0.00180526825813112 -0.00103547278097048 0.00202972923549924 0.00127992120343444 -0.00170430074604714 0.00588152522860069 -0.00257880934823165 -0.00270165345509185 0.000605358855440578 0.00366563922443009 0.0045409959925552 -0.000643791480355452 -0.000592834618556011 0.00277039361546545 0.00405977710356672 0.000665078000940488 -0.000969006282867427 -0.00158668951022226 -0.000794393348260039 0.000638022815746765 -0.00214771844939365 0.00105058419629655 -0.00254981462795891 0.00262015509706327 0.00153553233128507 -0.000947475648852895 0.00124325433079447 0.00104583455268845 -0.00480731405784928 -0.00122987289697014 0.00206882711674461 0.00183460657908581 -0.00177412254735189 0.00199191110992592 -0.00181600070846074 0.00190792404916493 -0.00352131241210541 -0.000333990880691547 0.00189578833611634 -0.00158666313146865 -0.00022224948193303
 
Text written by user:
 
Output produced by software:


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean0.0005481252982880.0002165630386531092.53101961302819
Geometric MeanNaN
Harmonic Mean0.00379511592157654
Quadratic Mean0.00239599438836171
Winsorized Mean ( 1 / 39 )0.0005528295515581720.0002152681300293402.56809752322753
Winsorized Mean ( 2 / 39 )0.0005531409132782440.0002148573741506782.57445626646415
Winsorized Mean ( 3 / 39 )0.0005642613452094610.0002041401608532162.76408788379071
Winsorized Mean ( 4 / 39 )0.0005568256971061360.0002008526056671612.77231004923516
Winsorized Mean ( 5 / 39 )0.0005593678980787970.0001996359020853782.80194039366512
Winsorized Mean ( 6 / 39 )0.0005571702678162650.0001984877652416682.80707612954323
Winsorized Mean ( 7 / 39 )0.0005503388719800380.0001970208928401872.79330209119722
Winsorized Mean ( 8 / 39 )0.0005430003382110150.0001936858975703622.80350993553237
Winsorized Mean ( 9 / 39 )0.0005449055595155910.0001850100558660022.94527536335782
Winsorized Mean ( 10 / 39 )0.0005476408692241120.0001835584107901892.98346922304789
Winsorized Mean ( 11 / 39 )0.0005510588161275860.0001826767576901343.0165786994223
Winsorized Mean ( 12 / 39 )0.0005476261463049310.0001813060334665833.02045186160816
Winsorized Mean ( 13 / 39 )0.0005798727164206730.0001731814959157353.34835262482559
Winsorized Mean ( 14 / 39 )0.0005832016926371650.0001716905967453713.39681790204324
Winsorized Mean ( 15 / 39 )0.0005640646431383520.0001685049606707573.34746609769242
Winsorized Mean ( 16 / 39 )0.000577860030501630.0001641078109575513.52122197675956
Winsorized Mean ( 17 / 39 )0.0005431663587652710.0001588408963154733.41956241348886
Winsorized Mean ( 18 / 39 )0.0005252677935911870.0001535701421402543.42037707506624
Winsorized Mean ( 19 / 39 )0.0005311340683143520.0001525624421791663.48142085776656
Winsorized Mean ( 20 / 39 )0.0005284607491035220.0001491852629249793.54231201354834
Winsorized Mean ( 21 / 39 )0.00053897648922760.0001451778467697413.71252571394341
Winsorized Mean ( 22 / 39 )0.0005174920882054470.0001425571049465403.63006872508746
Winsorized Mean ( 23 / 39 )0.0005297903203749020.0001389235025954293.81353990129194
Winsorized Mean ( 24 / 39 )0.0005316477238320780.0001332426520389073.99007161518248
Winsorized Mean ( 25 / 39 )0.0005152605746535260.0001296935905643753.97290700651679
Winsorized Mean ( 26 / 39 )0.0005052654553248220.0001233116652160524.0974668085096
Winsorized Mean ( 27 / 39 )0.0005238155828919130.0001194738862265614.38435209095475
Winsorized Mean ( 28 / 39 )0.0005194704559508260.0001178417672586514.40820320362846
Winsorized Mean ( 29 / 39 )0.0005348611054143820.0001159884910202764.61132911299691
Winsorized Mean ( 30 / 39 )0.0005390514837683090.0001133460170607724.75580437448709
Winsorized Mean ( 31 / 39 )0.0005202663748111910.0001105097648003064.70787695323869
Winsorized Mean ( 32 / 39 )0.0005228359258446110.0001094676871284534.77616673522204
Winsorized Mean ( 33 / 39 )0.0005534576927982690.0001031752772068345.36424720903596
Winsorized Mean ( 34 / 39 )0.0005494347238313220.0001025585907789885.35727645688254
Winsorized Mean ( 35 / 39 )0.0005776981142030699.74796207474308e-055.92634757679128
Winsorized Mean ( 36 / 39 )0.0005342404032956229.1245767820365e-055.85496090456905
Winsorized Mean ( 37 / 39 )0.0005350269807107338.95368643399587e-055.97549383323624
Winsorized Mean ( 38 / 39 )0.0005335328624933558.76613623535475e-056.08629444226022
Winsorized Mean ( 39 / 39 )0.000572277424124977.97670531908561e-057.17435835012859
Trimmed Mean ( 1 / 39 )0.0005541774004530150.0002088283682483872.65374577745999
Trimmed Mean ( 2 / 39 )0.0005555729608131630.0002016257428162752.75546640549472
Trimmed Mean ( 3 / 39 )0.000556854715595080.0001937787687698792.87366216190778
Trimmed Mean ( 4 / 39 )0.0005542046371092010.0001895110921690652.92439155284266
Trimmed Mean ( 5 / 39 )0.0005534881323904120.0001858134932175892.97872949270845
Trimmed Mean ( 6 / 39 )0.000552177784608430.0001820064073793153.03383706408560
Trimmed Mean ( 7 / 39 )0.0005512326057486940.0001780106647850763.09662685892575
Trimmed Mean ( 8 / 39 )0.0005513805079423750.0001738355218883273.17185177087446
Trimmed Mean ( 9 / 39 )0.0005526184875617810.0001697965003330673.25459291845112
Trimmed Mean ( 10 / 39 )0.0005536521789494140.0001668315737584253.31862948047899
Trimmed Mean ( 11 / 39 )0.0005543925191997940.0001637218024940123.386186266915
Trimmed Mean ( 12 / 39 )0.0005547737931581990.0001603358654642733.46007296341203
Trimmed Mean ( 13 / 39 )0.0005555396124639060.0001567001773006863.54523920798062
Trimmed Mean ( 14 / 39 )0.0005530789615019860.0001537982179989773.59613374392715
Trimmed Mean ( 15 / 39 )0.0005530789615019860.0001506934632560463.6702253007633
Trimmed Mean ( 16 / 39 )0.000548911773871430.0001475949556786443.71904155767062
Trimmed Mean ( 17 / 39 )0.0005463613627074740.0001446518005483773.77707958446566
Trimmed Mean ( 18 / 39 )0.0005466328336306680.0001419897719810463.84980429226717
Trimmed Mean ( 19 / 39 )0.0005483907166718910.0001396177052249853.92780210638899
Trimmed Mean ( 20 / 39 )0.0005497707767250910.0001369839984916454.01339413930615
Trimmed Mean ( 21 / 39 )0.0005514329588795740.000134362095435884.10408126704698
Trimmed Mean ( 22 / 39 )0.0005523836483442060.0001318293194184604.19014260849513
Trimmed Mean ( 23 / 39 )0.0005549971646926270.0001291916872097454.29592009114008
Trimmed Mean ( 24 / 39 )0.0005568555142737070.0001265705663935024.39956563473431
Trimmed Mean ( 25 / 39 )0.0005586896632050940.0001242392434156974.49688558820141
Trimmed Mean ( 26 / 39 )0.0005618165575808070.0001219281870951824.60776602166841
Trimmed Mean ( 27 / 39 )0.0005658559220276630.0001200255737535084.71446129630457
Trimmed Mean ( 28 / 39 )0.0005688423942067060.0001182421255232214.81082686639454
Trimmed Mean ( 29 / 39 )0.0005723390750638110.0001162646210027714.92272774062687
Trimmed Mean ( 30 / 39 )0.0005723390750638110.0001140911419407265.01650755113978
Trimmed Mean ( 31 / 39 )0.0005775402745033960.0001117914326402665.16623019191338
Trimmed Mean ( 32 / 39 )0.0005816188175733820.0001093496486385435.31889059374973
Trimmed Mean ( 33 / 39 )0.0005858330322377610.0001064367021343075.50405095695778
Trimmed Mean ( 34 / 39 )0.000588175589265850.0001038823997138505.66193687175124
Trimmed Mean ( 35 / 39 )0.0005910120606399680.0001007007537139775.86899341705662
Trimmed Mean ( 36 / 39 )0.0005920010966609959.76106510261321e-056.06492314555412
Trimmed Mean ( 37 / 39 )0.0005963667304618669.48235739540676e-056.28922435206613
Trimmed Mean ( 38 / 39 )0.0006010976142594159.14785978370255e-056.57090979171222
Trimmed Mean ( 39 / 39 )0.0006064316736093678.7418661582587e-056.93709629764182
Median0.000638022815746765
Midrange0.00020012942379962
Midmean - Weighted Average at Xnp0.000547225150345612
Midmean - Weighted Average at X(n+1)p0.000572339075063811
Midmean - Empirical Distribution Function0.000572339075063811
Midmean - Empirical Distribution Function - Averaging0.000572339075063811
Midmean - Empirical Distribution Function - Interpolation0.000572339075063811
Midmean - Closest Observation0.000544494280185163
Midmean - True Basic - Statistics Graphics Toolkit0.000572339075063811
Midmean - MS Excel (old versions)0.000572339075063811
Number of observations117
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196418935xljq63we7x6ts8c/1tn231196419482.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196418935xljq63we7x6ts8c/1tn231196419482.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196418935xljq63we7x6ts8c/2wl6y1196419482.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/30/t1196418935xljq63we7x6ts8c/2wl6y1196419482.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by