Home » date » 2007 » Nov » 25 » attachments

central tendancy, vrouwen

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Sun, 25 Nov 2007 14:12:37 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/25/t1196024616ty88b11isw8dzma.htm/, Retrieved Sun, 25 Nov 2007 22:03:38 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
8,7 8,5 8,2 8,3 8 8,1 8,7 9,3 8,9 8,8 8,4 8,4 7,3 7,2 7 7 6,9 6,9 7,1 7,5 7,4 8,9 8,3 8,3 9 8,9 8,8 7,8 7,8 7,8 9,2 9,3 9,2 8,6 8,5 8,5 9 9 8,8 8 7,9 8,1 9,3 9,4 9,4 9,3 9 9,1 9,7 9,7 9,6 8,3 8,2 8,4 10,6 10,9 10,9 9,6 9,3 9,3 9,6 9,5 9,5 9 8,9 9 10,1 10,2 10,2 9,5 9,3 9,3 9,4 9,3 9,1 9 8,9 9 9,8 10 9,8 9,4 9 8,9 9,3 9,1 8,8 8,9 8,7 8,6 9,1 9,3 8,9
 
Text written by user:
 
Output produced by software:


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean8.846236559139780.0871146646445433101.547042570104
Geometric Mean8.8055188260725
Harmonic Mean8.76338191212069
Quadratic Mean8.88561117883882
Winsorized Mean ( 1 / 31 )8.846236559139780.0871146646445433101.547042570104
Winsorized Mean ( 2 / 31 )8.841935483870970.0850476667028924103.964468710936
Winsorized Mean ( 3 / 31 )8.829032258064520.082427247663984107.113030075397
Winsorized Mean ( 4 / 31 )8.833333333333330.081410734252619108.503300141273
Winsorized Mean ( 5 / 31 )8.833333333333330.0792280033542793111.492565246581
Winsorized Mean ( 6 / 31 )8.833333333333330.0767096450463397115.152838055725
Winsorized Mean ( 7 / 31 )8.82580645161290.0727459029755943121.323759697833
Winsorized Mean ( 8 / 31 )8.834408602150540.0709498539514126124.516233792397
Winsorized Mean ( 9 / 31 )8.853763440860210.0639504969363283138.447140601196
Winsorized Mean ( 10 / 31 )8.853763440860210.0639504969363283138.447140601196
Winsorized Mean ( 11 / 31 )8.841935483870970.0623170080469544141.886392832095
Winsorized Mean ( 12 / 31 )8.854838709677420.060027968567665147.511883559678
Winsorized Mean ( 13 / 31 )8.868817204301080.0576738280411099153.775421287787
Winsorized Mean ( 14 / 31 )8.853763440860210.0556856018622118158.995559799603
Winsorized Mean ( 15 / 31 )8.869892473118280.053068202305379167.141378222628
Winsorized Mean ( 16 / 31 )8.869892473118280.053068202305379167.141378222628
Winsorized Mean ( 17 / 31 )8.869892473118280.0479545363389657184.964617537361
Winsorized Mean ( 18 / 31 )8.869892473118280.0479545363389657184.964617537361
Winsorized Mean ( 19 / 31 )8.890322580645160.0449420310256366197.817552472735
Winsorized Mean ( 20 / 31 )8.890322580645160.0449420310256366197.817552472735
Winsorized Mean ( 21 / 31 )8.867741935483870.0422917937259207209.679967535849
Winsorized Mean ( 22 / 31 )8.867741935483870.0422917937259207209.679967535849
Winsorized Mean ( 23 / 31 )8.892473118279570.0387761752864464229.328268004498
Winsorized Mean ( 24 / 31 )8.892473118279570.0387761752864464229.328268004498
Winsorized Mean ( 25 / 31 )8.892473118279570.0387761752864464229.328268004498
Winsorized Mean ( 26 / 31 )8.920430107526880.0350168309155775254.746928099612
Winsorized Mean ( 27 / 31 )8.920430107526880.0350168309155775254.746928099612
Winsorized Mean ( 28 / 31 )8.920430107526880.0350168309155775254.746928099612
Winsorized Mean ( 29 / 31 )8.95161290322580.0310563929011770288.237366512920
Winsorized Mean ( 30 / 31 )8.95161290322580.0310563929011770288.237366512920
Winsorized Mean ( 31 / 31 )8.984946236559140.0270898905598560331.671559052872
Trimmed Mean ( 1 / 31 )8.845054945054950.083370156498228106.093778836111
Trimmed Mean ( 2 / 31 )8.84382022471910.0790319858732003111.901784157470
Trimmed Mean ( 3 / 31 )8.84482758620690.0753102576831022117.445190845383
Trimmed Mean ( 4 / 31 )8.850588235294120.0721736066311682122.629152794368
Trimmed Mean ( 5 / 31 )8.855421686746990.0688952539397472128.534567772862
Trimmed Mean ( 6 / 31 )8.86049382716050.0657501587179627134.760037084745
Trimmed Mean ( 7 / 31 )8.865822784810130.0627686973492701141.245926062113
Trimmed Mean ( 8 / 31 )8.872727272727270.0602636144369441147.231913578816
Trimmed Mean ( 9 / 31 )8.878666666666670.0577441805759714153.758639885545
Trimmed Mean ( 10 / 31 )8.882191780821920.0563117567549924157.732457530451
Trimmed Mean ( 11 / 31 )8.885915492957750.0546175941260714162.693279247101
Trimmed Mean ( 12 / 31 )8.891304347826090.0529093520369517168.047878220403
Trimmed Mean ( 13 / 31 )8.891304347826090.0513249522880171173.235511217454
Trimmed Mean ( 14 / 31 )8.898461538461540.0498792921660106178.399916118401
Trimmed Mean ( 15 / 31 )8.90317460317460.04847749853964183.655817056948
Trimmed Mean ( 16 / 31 )8.906557377049180.0472679174955509188.427116085398
Trimmed Mean ( 17 / 31 )8.910169491525420.0457865167429707194.602475255848
Trimmed Mean ( 18 / 31 )8.91403508771930.0448779042938135198.628595251675
Trimmed Mean ( 19 / 31 )8.918181818181820.0437386567567898203.897021067008
Trimmed Mean ( 20 / 31 )8.920754716981130.0428788493611966208.04557141531
Trimmed Mean ( 21 / 31 )8.92352941176470.041782652868603213.570197177934
Trimmed Mean ( 22 / 31 )8.928571428571430.0408248290463863218.704441319927
Trimmed Mean ( 23 / 31 )8.934042553191490.0395717823086721225.768010232726
Trimmed Mean ( 24 / 31 )8.937777777777780.0387022940474364230.936640779561
Trimmed Mean ( 25 / 31 )8.941860465116280.0375366278321488238.216935871312
Trimmed Mean ( 26 / 31 )8.941860465116280.0359704419603723248.589118670471
Trimmed Mean ( 27 / 31 )8.948717948717950.0348259204488832256.955676501148
Trimmed Mean ( 28 / 31 )8.951351351351350.0332480037608035269.229738294971
Trimmed Mean ( 29 / 31 )8.954285714285710.0310442506464447288.436200836795
Trimmed Mean ( 30 / 31 )8.954545454545460.0292231841242211306.419225792841
Trimmed Mean ( 31 / 31 )8.954838709677420.0265745895597106336.969972369911
Median9
Midrange8.9
Midmean - Weighted Average at Xnp8.94897959183674
Midmean - Weighted Average at X(n+1)p8.94897959183674
Midmean - Empirical Distribution Function8.94897959183674
Midmean - Empirical Distribution Function - Averaging8.94897959183674
Midmean - Empirical Distribution Function - Interpolation8.94897959183674
Midmean - Closest Observation8.9
Midmean - True Basic - Statistics Graphics Toolkit8.94897959183674
Midmean - MS Excel (old versions)8.94897959183674
Number of observations93
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196024616ty88b11isw8dzma/1xhgi1196025154.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196024616ty88b11isw8dzma/1xhgi1196025154.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196024616ty88b11isw8dzma/28goc1196025154.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196024616ty88b11isw8dzma/28goc1196025154.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by