Home » date » 2007 » Nov » 25 » attachments

central tendancy

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Sun, 25 Nov 2007 14:07:23 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/25/t1196024310owcs90so0ryv4pp.htm/, Retrieved Sun, 25 Nov 2007 21:58:30 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
6,4 6,3 6 5,3 5,2 5,1 5,4 5,8 5,6 5,6 5,4 5,4 5,5 5,5 5,3 5,7 5,6 5,5 5,6 5,9 6 7 6,6 6,6 6,3 6,3 6,3 6,3 6,2 6,2 6,3 6,4 6,4 7,8 7,7 7,7 7,7 7,7 7,6 7,5 7,4 7,4 7,5 7,6 7,6 8,1 7,8 8 7,9 7,9 7,8 6,7 6,6 6,6 7,7 7,9 8 7,7 7,5 7,6 7,8 7,8 7,7 7,4 7,5 7,2 7,5 7,6 7,6 7,8 7,7 7,7 8,2 8,2 8,1 7,8 7,8 7,7 6,7 6,7 6,7 7,2 6,9 6,8 7,2 7,1 6,9 6,9 6,7 6,5 6,6 6,6 6,5
 
Text written by user:
 
Output produced by software:


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean6.893548387096770.091246195993806375.5488852112224
Geometric Mean6.83540089721255
Harmonic Mean6.77489875999796
Quadratic Mean6.94888402891513
Winsorized Mean ( 1 / 31 )6.894623655913980.091022522263090275.7463480959784
Winsorized Mean ( 2 / 31 )6.894623655913980.090274704023501276.3738162367069
Winsorized Mean ( 3 / 31 )6.894623655913980.090274704023501276.3738162367068
Winsorized Mean ( 4 / 31 )6.894623655913980.088865447551781577.584976454392
Winsorized Mean ( 5 / 31 )6.894623655913980.088865447551781577.584976454392
Winsorized Mean ( 6 / 31 )6.888172043010750.088026111005277378.2514638480143
Winsorized Mean ( 7 / 31 )6.895698924731180.086675575545828579.5575787216455
Winsorized Mean ( 8 / 31 )6.895698924731180.086675575545828579.5575787216455
Winsorized Mean ( 9 / 31 )6.886021505376340.085503642219192680.5348325130257
Winsorized Mean ( 10 / 31 )6.896774193548390.08364995874586182.448028629657
Winsorized Mean ( 11 / 31 )6.896774193548390.08364995874586182.448028629657
Winsorized Mean ( 12 / 31 )6.896774193548390.08364995874586182.448028629657
Winsorized Mean ( 13 / 31 )6.896774193548390.08364995874586182.448028629657
Winsorized Mean ( 14 / 31 )6.911827956989250.081159339499230585.1636792467339
Winsorized Mean ( 15 / 31 )6.927956989247310.078591587724460388.1513809536017
Winsorized Mean ( 16 / 31 )6.945161290322580.07596221054654791.429162478978
Winsorized Mean ( 17 / 31 )6.945161290322580.071098311608549497.6839130661921
Winsorized Mean ( 18 / 31 )6.945161290322580.071098311608549497.6839130661921
Winsorized Mean ( 19 / 31 )6.986021505376340.0654682739892679106.708502908165
Winsorized Mean ( 20 / 31 )6.986021505376340.0654682739892679106.708502908165
Winsorized Mean ( 21 / 31 )7.008602150537640.0626039278786162111.951476337503
Winsorized Mean ( 22 / 31 )7.008602150537630.0626039278786162111.951476337503
Winsorized Mean ( 23 / 31 )7.008602150537640.0626039278786162111.951476337503
Winsorized Mean ( 24 / 31 )7.008602150537630.0626039278786162111.951476337503
Winsorized Mean ( 25 / 31 )7.008602150537630.0626039278786162111.951476337503
Winsorized Mean ( 26 / 31 )7.008602150537640.0626039278786162111.951476337503
Winsorized Mean ( 27 / 31 )7.008602150537630.0556666410652373125.903090547965
Winsorized Mean ( 28 / 31 )7.008602150537630.0556666410652373125.903090547965
Winsorized Mean ( 29 / 31 )7.008602150537630.0556666410652373125.903090547965
Winsorized Mean ( 30 / 31 )7.040860215053760.051920493375909135.608499789809
Winsorized Mean ( 31 / 31 )7.040860215053760.051920493375909135.608499789809
Trimmed Mean ( 1 / 31 )6.89890109890110.089980251604800876.6712803738483
Trimmed Mean ( 2 / 31 )6.903370786516850.088778589723909977.7594103261322
Trimmed Mean ( 3 / 31 )6.90804597701150.087835634068116678.6474196981865
Trimmed Mean ( 4 / 31 )6.912941176470590.086736476440778279.7005073314293
Trimmed Mean ( 5 / 31 )6.918072289156630.085919420769997180.51814394415
Trimmed Mean ( 6 / 31 )6.923456790123460.084952267006611281.4981993309802
Trimmed Mean ( 7 / 31 )6.930379746835440.084007743541547382.496915815956
Trimmed Mean ( 8 / 31 )6.936363636363640.083188942618527783.3808366596402
Trimmed Mean ( 9 / 31 )6.942666666666670.082203293008135584.4572816076792
Trimmed Mean ( 10 / 31 )6.950684931506850.081232029687499685.565816319575
Trimmed Mean ( 11 / 31 )6.957746478873240.080407963103830686.5305650124319
Trimmed Mean ( 12 / 31 )6.965217391304350.079395254951200287.7283837124205
Trimmed Mean ( 13 / 31 )6.965217391304350.078156683413217889.118640749876
Trimmed Mean ( 14 / 31 )6.981538461538460.076645171071116591.0890844650934
Trimmed Mean ( 15 / 31 )6.988888888888890.075257234619510892.866671546246
Trimmed Mean ( 16 / 31 )6.995081967213110.074011748790723794.513129084309
Trimmed Mean ( 17 / 31 )70.072928233058873995.9847744336409
Trimmed Mean ( 18 / 31 )7.005263157894740.072349621618348396.8251526573038
Trimmed Mean ( 19 / 31 )7.010909090909090.0715707710439897.957713583956
Trimmed Mean ( 20 / 31 )7.013207547169810.071478159292182998.1167900323477
Trimmed Mean ( 21 / 31 )7.01568627450980.071256099788134298.4573432361517
Trimmed Mean ( 22 / 31 )7.016326530612250.071330107060491298.3641665455805
Trimmed Mean ( 23 / 31 )7.017021276595740.071285224600916198.435844396646
Trimmed Mean ( 24 / 31 )7.017777777777780.071087432926571498.7203713633418
Trimmed Mean ( 25 / 31 )7.018604651162790.070691554202654299.2849107694291
Trimmed Mean ( 26 / 31 )7.018604651162790.0700365333406754100.213478828578
Trimmed Mean ( 27 / 31 )7.020512820512820.0690380683949977101.690458376462
Trimmed Mean ( 28 / 31 )7.021621621621620.0690057158200889101.754203085558
Trimmed Mean ( 29 / 31 )7.022857142857140.0687323042816167102.176948907204
Trimmed Mean ( 30 / 31 )7.024242424242420.0681228701405041103.111369350041
Trimmed Mean ( 31 / 31 )7.022580645161290.0679515446301299103.346887600366
Median6.9
Midrange6.65
Midmean - Weighted Average at Xnp7.06545454545454
Midmean - Weighted Average at X(n+1)p7.06545454545454
Midmean - Empirical Distribution Function7.06545454545454
Midmean - Empirical Distribution Function - Averaging7.06545454545454
Midmean - Empirical Distribution Function - Interpolation7.06545454545454
Midmean - Closest Observation7.06545454545454
Midmean - True Basic - Statistics Graphics Toolkit7.06545454545454
Midmean - MS Excel (old versions)7.06545454545454
Number of observations93
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196024310owcs90so0ryv4pp/1269v1196024838.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196024310owcs90so0ryv4pp/1269v1196024838.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196024310owcs90so0ryv4pp/28a341196024838.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196024310owcs90so0ryv4pp/28a341196024838.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by