Home » date » 2007 » Nov » 25 » attachments

paper

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 25 Nov 2007 10:37:50 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864.htm/, Retrieved Sun, 25 Nov 2007 18:28:45 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
8,7 0 8,5 0 8,2 0 8,3 0 8 0 8,1 0 8,7 0 9,3 0 8,9 0 8,8 0 8,4 0 8,4 0 7,3 0 7,2 0 7 0 7 0 6,9 0 6,9 0 7,1 0 7,5 0 7,4 0 8,9 0 8,3 1 8,3 1 9 1 8,9 1 8,8 1 7,8 1 7,8 1 7,8 1 9,2 1 9,3 1 9,2 1 8,6 1 8,5 1 8,5 1 9 1 9 1 8,8 1 8 1 7,9 1 8,1 1 9,3 1 9,4 1 9,4 1 9,3 1 9 1 9,1 1 9,7 1 9,7 1 9,6 1 8,3 1 8,2 1 8,4 1 10,6 1 10,9 1 10,9 1 9,6 1 9,3 1 9,3 1 9,6 1 9,5 1 9,5 1 9 1 8,9 1 9 1 10,1 1 10,2 1 10,2 1 9,5 1 9,3 1 9,3 1 9,4 1 9,3 1 9,1 1 9 1 8,9 1 9 1 9,8 1 10 1 9,8 1 9,4 1 9 1 8,9 1 9,3 1 9,1 1 8,8 1 8,9 1 8,7 1 8,6 1 9,1 1 9,3 1 8,9 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
WLHvrouwen[t] = + 7.88130050731213 + 0.7501586454157x[t] + 0.00834541043135596t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)7.881300507312130.15062452.324500
x0.75015864541570.2434153.08180.002730.001365
t0.008345410431355960.0038532.16580.0329740.016487


Multiple Linear Regression - Regression Statistics
Multiple R0.60667350831097
R-squared0.368052745686340
Adjusted R-squared0.354009473368259
F-TEST (value)26.2084745883947
F-TEST (DF numerator)2
F-TEST (DF denominator)90
p-value1.07309316987880e-09
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.675220809045129
Sum Squared Residuals41.0330826870802


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
18.77.889645917743510.810354082256486
28.57.897991328174840.602008671825159
38.27.90633673860620.293663261393798
48.37.914682149037560.385317850962444
587.923027559468910.0769724405310875
68.17.931372969900270.168627030099731
78.77.939718380331620.760281619668375
89.37.948063790762981.35193620923702
98.97.956409201194340.943590798805664
108.87.96475461162570.835245388374308
118.47.973100022057050.426899977942952
128.47.98144543248840.418554567511596
137.37.98979084291976-0.68979084291976
147.27.99813625335112-0.798136253351116
1578.00648166378247-1.00648166378247
1678.01482707421383-1.01482707421383
176.98.02317248464518-1.12317248464518
186.98.03151789507654-1.13151789507654
197.18.0398633055079-0.939863305507896
207.58.04820871593925-0.548208715939252
217.48.05655412637061-0.656554126370607
228.98.064899536801960.835100463198037
238.38.82340359264902-0.52340359264902
248.38.83174900308038-0.531749003080376
2598.840094413511730.159905586488267
268.98.848439823943090.0515601760569119
278.88.85678523437444-0.0567852343744437
287.88.8651306448058-1.0651306448058
297.88.87347605523716-1.07347605523716
307.88.88182146566851-1.08182146566851
319.28.890166876099870.309833123900131
329.38.898512286531220.401487713468777
339.28.906857696962580.293142303037419
348.68.91520310739394-0.315203107393937
358.58.9235485178253-0.423548517825292
368.58.93189392825665-0.431893928256648
3798.9402393386880.0597606613119961
3898.948584749119360.0514152508806401
398.88.95693015955072-0.156930159550715
4088.96527556998207-0.965275569982072
417.98.97362098041343-1.07362098041343
428.18.98196639084478-0.881966390844784
439.38.990311801276140.309688198723861
449.48.99865721170750.401342788292505
459.49.007002622138850.392997377861149
469.39.015348032570210.284651967429793
4799.02369344300156-0.0236934430015635
489.19.032038853432920.0679611465670802
499.79.040384263864280.659615736135724
509.79.048729674295630.651270325704368
519.69.057075084726990.542924915273012
528.39.06542049515834-0.765420495158343
538.29.0737659055897-0.8737659055897
548.49.08211131602106-0.682111316021055
5510.69.090456726452411.50954327354759
5610.99.098802136883771.80119786311623
5710.99.107147547315121.79285245268488
589.69.115492957746480.484507042253521
599.39.123838368177830.176161631822166
609.39.132183778609190.16781622139081
619.69.140529189040550.459470810959453
629.59.14887459947190.351125400528097
639.59.157220009903260.342779990096741
6499.16556542033461-0.165565420334615
658.99.17391083076597-0.27391083076597
6699.18225624119733-0.182256241197327
6710.19.190601651628680.909398348371317
6810.29.198947062060041.00105293793996
6910.29.20729247249140.992707527508605
709.59.215637882922750.284362117077250
719.39.22398329335410.0760167066458944
729.39.232328703785460.0676712962145384
739.49.240674114216820.159325885783182
749.39.249019524648170.0509804753518265
759.19.25736493507953-0.157364935079531
7699.26571034551089-0.265710345510886
778.99.27405575594224-0.374055755942242
7899.2824011663736-0.282401166373598
799.89.290746576804950.509253423195047
80109.29909198723630.70090801276369
819.89.307437397667670.492562602332335
829.49.315782808099020.0842171919009785
8399.32412821853038-0.324128218530378
848.99.33247362896173-0.432473628961733
859.39.34081903939309-0.040819039393089
869.19.34916444982445-0.249164449824446
878.89.3575098602558-0.557509860255801
888.99.36585527068716-0.465855270687157
898.79.37420068111851-0.674200681118514
908.69.38254609154987-0.78254609154987
919.19.39089150198123-0.290891501981226
929.39.39923691241258-0.0992369124125806
938.99.40758232284394-0.507582322843937
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/10fmy1196012265.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/10fmy1196012265.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/263721196012265.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/263721196012265.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/30yuu1196012265.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/30yuu1196012265.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/47qj21196012266.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/47qj21196012266.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/5qd651196012266.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/5qd651196012266.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/61gg41196012266.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/61gg41196012266.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/7ggfr1196012266.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/7ggfr1196012266.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/8covx1196012266.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/8covx1196012266.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/9845w1196012266.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196011715vin3dgr7ila1864/9845w1196012266.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by