Home » date » 2007 » Nov » 25 » attachments

paper

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 25 Nov 2007 10:05:20 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak.htm/, Retrieved Sun, 25 Nov 2007 17:56:56 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
8,7 0 8,5 0 8,2 0 8,3 0 8 0 8,1 0 8,7 0 9,3 0 8,9 0 8,8 0 8,4 0 8,4 0 7,3 0 7,2 0 7 0 7 0 6,9 0 6,9 0 7,1 0 7,5 0 7,4 0 8,9 0 8,3 1 8,3 1 9 1 8,9 1 8,8 1 7,8 1 7,8 1 7,8 1 9,2 1 9,3 1 9,2 1 8,6 1 8,5 1 8,5 1 9 1 9 1 8,8 1 8 1 7,9 1 8,1 1 9,3 1 9,4 1 9,4 1 9,3 1 9 1 9,1 1 9,7 1 9,7 1 9,6 1 8,3 1 8,2 1 8,4 1 10,6 1 10,9 1 10,9 1 9,6 1 9,3 1 9,3 1 9,6 1 9,5 1 9,5 1 9 1 8,9 1 9 1 10,1 1 10,2 1 10,2 1 9,5 1 9,3 1 9,3 1 9,4 1 9,3 1 9,1 1 9 1 8,9 1 9 1 9,8 1 10 1 9,8 1 9,4 1 9 1 8,9 1 9,3 1 9,1 1 8,8 1 8,9 1 8,7 1 8,6 1 9,1 1 9,3 1 8,9 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
WLHvrouwen[t] = + 7.83862660944206 + 1.15493562231760x[t] + 0.295171673819742M1[t] + 0.195171673819742M2[t] + 0.0201716738197424M3[t] -0.417328326180258M4[t] -0.542328326180258M5[t] -0.467328326180258M6[t] + 0.532671673819742M7[t] + 0.782671673819742M8[t] + 0.632671673819743M9[t] + 0.493562231759657M10[t] + 1.33118141655746e-16M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)7.838626609442060.24687631.751200
x1.154935622317600.139948.253100
M10.2951716738197420.2958460.99770.3214240.160712
M20.1951716738197420.2958460.65970.5113370.255669
M30.02017167381974240.2958460.06820.945810.472905
M4-0.4173283261802580.295846-1.41060.1622320.081116
M5-0.5423283261802580.295846-1.83310.0705010.035251
M6-0.4673283261802580.295846-1.57960.1181370.059069
M70.5326716738197420.2958461.80050.0755510.037775
M80.7826716738197420.2958462.64550.0098160.004908
M90.6326716738197430.2958462.13850.0355260.017763
M100.4935622317596570.305811.61390.1104760.055238
M111.33118141655746e-160.305156010.5


Multiple Linear Regression - Regression Statistics
Multiple R0.77358967571846
R-squared0.598440986378192
Adjusted R-squared0.53820713433492
F-TEST (value)9.93529329567498
F-TEST (DF numerator)12
F-TEST (DF denominator)80
p-value1.440192409774e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.57089514926931
Sum Squared Residuals26.0737017167382


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
18.78.13379828326180.566201716738197
28.58.03379828326180.466201716738196
38.27.85879828326180.341201716738197
48.37.42129828326180.878701716738198
587.29629828326180.703701716738198
68.17.37129828326180.728701716738197
78.78.37129828326180.328701716738197
89.38.62129828326180.678701716738198
98.98.47129828326180.428701716738198
108.88.332188841201720.467811158798284
118.47.838626609442060.56137339055794
128.47.838626609442060.56137339055794
137.38.1337982832618-0.833798283261802
147.28.0337982832618-0.833798283261802
1577.8587982832618-0.858798283261803
1677.4212982832618-0.421298283261803
176.97.2962982832618-0.396298283261802
186.97.3712982832618-0.471298283261802
197.18.3712982832618-1.27129828326180
207.58.6212982832618-1.12129828326180
217.48.4712982832618-1.07129828326180
228.98.332188841201720.567811158798283
238.38.99356223175966-0.693562231759656
248.38.99356223175966-0.693562231759656
2599.2887339055794-0.288733905579399
268.99.1887339055794-0.288733905579399
278.89.0137339055794-0.213733905579399
287.88.5762339055794-0.776233905579399
297.88.4512339055794-0.651233905579399
307.88.5262339055794-0.726233905579399
319.29.5262339055794-0.326233905579400
329.39.7762339055794-0.476233905579399
339.29.6262339055794-0.4262339055794
348.69.48712446351931-0.887124463519314
358.58.99356223175966-0.493562231759657
368.58.99356223175966-0.493562231759657
3799.2887339055794-0.288733905579399
3899.1887339055794-0.188733905579399
398.89.0137339055794-0.213733905579399
4088.5762339055794-0.576233905579399
417.98.4512339055794-0.551233905579399
428.18.5262339055794-0.426233905579399
439.39.5262339055794-0.226233905579398
449.49.7762339055794-0.376233905579399
459.49.6262339055794-0.226233905579399
469.39.48712446351931-0.187124463519313
4798.993562231759660.00643776824034309
489.18.993562231759660.106437768240343
499.79.28873390557940.4112660944206
509.79.18873390557940.5112660944206
519.69.01373390557940.5862660944206
528.38.5762339055794-0.276233905579399
538.28.4512339055794-0.2512339055794
548.48.5262339055794-0.126233905579399
5510.69.52623390557941.0737660944206
5610.99.77623390557941.1237660944206
5710.99.62623390557941.2737660944206
589.69.487124463519310.112875536480686
599.38.993562231759660.306437768240344
609.38.993562231759660.306437768240344
619.69.28873390557940.311266094420601
629.59.18873390557940.311266094420601
639.59.01373390557940.486266094420601
6498.57623390557940.423766094420601
658.98.45123390557940.448766094420601
6698.52623390557940.473766094420601
6710.19.52623390557940.573766094420601
6810.29.77623390557940.4237660944206
6910.29.62623390557940.5737660944206
709.59.487124463519310.0128755364806864
719.38.993562231759660.306437768240344
729.38.993562231759660.306437768240344
739.49.28873390557940.111266094420601
749.39.18873390557940.111266094420601
759.19.01373390557940.0862660944206004
7698.57623390557940.423766094420601
778.98.45123390557940.448766094420601
7898.52623390557940.473766094420601
799.89.52623390557940.273766094420602
80109.77623390557940.223766094420601
819.89.62623390557940.173766094420601
829.49.48712446351931-0.0871244635193132
8398.993562231759660.00643776824034309
848.98.99356223175966-0.0935622317596566
859.39.28873390557940.0112660944206016
869.19.1887339055794-0.0887339055793996
878.89.0137339055794-0.213733905579399
888.98.57623390557940.323766094420601
898.78.45123390557940.2487660944206
908.68.52623390557940.0737660944206005
919.19.5262339055794-0.426233905579399
929.39.7762339055794-0.476233905579399
938.99.6262339055794-0.726233905579399
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/14ocd1196010310.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/14ocd1196010310.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/2qj6s1196010310.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/2qj6s1196010310.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/37n791196010310.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/37n791196010310.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/467t41196010311.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/467t41196010311.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/5mv721196010311.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/5mv721196010311.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/6rznh1196010311.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/6rznh1196010311.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/7adz51196010311.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/7adz51196010311.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/8ryed1196010311.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/8ryed1196010311.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/9s4li1196010311.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t11960098162e1egiqe2edvzak/9s4li1196010311.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by