Home » date » 2007 » Nov » 25 » attachments

paper

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 25 Nov 2007 09:59:13 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7.htm/, Retrieved Sun, 25 Nov 2007 17:51:29 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
8,7 0 8,5 0 8,2 0 8,3 0 8 0 8,1 0 8,7 0 9,3 0 8,9 0 8,8 0 8,4 0 8,4 0 7,3 0 7,2 0 7 0 7 0 6,9 0 6,9 0 7,1 0 7,5 0 7,4 0 8,9 0 8,3 1 8,3 1 9 1 8,9 1 8,8 1 7,8 1 7,8 1 7,8 1 9,2 1 9,3 1 9,2 1 8,6 1 8,5 1 8,5 1 9 1 9 1 8,8 1 8 1 7,9 1 8,1 1 9,3 1 9,4 1 9,4 1 9,3 1 9 1 9,1 1 9,7 1 9,7 1 9,6 1 8,3 1 8,2 1 8,4 1 10,6 1 10,9 1 10,9 1 9,6 1 9,3 1 9,3 1 9,6 1 9,5 1 9,5 1 9 1 8,9 1 9 1 10,1 1 10,2 1 10,2 1 9,5 1 9,3 1 9,3 1 9,4 1 9,3 1 9,1 1 9 1 8,9 1 9 1 9,8 1 10 1 9,8 1 9,4 1 9 1 8,9 1 9,3 1 9,1 1 8,8 1 8,9 1 8,7 1 8,6 1 9,1 1 9,3 1 8,9 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
WLHvrouwen[t] = + 7.97727272727272 + 1.13822023047375x[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)7.977272727272720.14684854.323500
x1.138220230473750.1680666.772500


Multiple Linear Regression - Regression Statistics
Multiple R0.578893514173126
R-squared0.335117700751711
Adjusted R-squared0.327811301858873
F-TEST (value)45.8663297291626
F-TEST (DF numerator)1
F-TEST (DF denominator)91
p-value1.21531473773473e-09
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.688776540025267
Sum Squared Residuals43.1715941101152


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
18.77.977272727272750.722727272727247
28.57.977272727272720.522727272727278
38.27.977272727272730.222727272727273
48.37.977272727272730.322727272727274
587.977272727272730.0227272727272737
68.17.977272727272730.122727272727273
78.77.977272727272730.722727272727273
89.37.977272727272731.32272727272727
98.97.977272727272730.922727272727274
108.87.977272727272730.822727272727274
118.47.977272727272730.422727272727274
128.47.977272727272730.422727272727274
137.37.97727272727273-0.677272727272726
147.27.97727272727273-0.777272727272726
1577.97727272727273-0.977272727272726
1677.97727272727273-0.977272727272726
176.97.97727272727273-1.07727272727273
186.97.97727272727273-1.07727272727273
197.17.97727272727273-0.877272727272727
207.57.97727272727273-0.477272727272726
217.47.97727272727273-0.577272727272726
228.97.977272727272730.922727272727274
238.39.11549295774648-0.815492957746478
248.39.11549295774648-0.815492957746478
2599.11549295774648-0.115492957746479
268.99.11549295774648-0.215492957746479
278.89.11549295774648-0.315492957746478
287.89.11549295774648-1.31549295774648
297.89.11549295774648-1.31549295774648
307.89.11549295774648-1.31549295774648
319.29.115492957746480.0845070422535203
329.39.115492957746480.184507042253522
339.29.115492957746480.0845070422535203
348.69.11549295774648-0.51549295774648
358.59.11549295774648-0.615492957746479
368.59.11549295774648-0.615492957746479
3799.11549295774648-0.115492957746479
3899.11549295774648-0.115492957746479
398.89.11549295774648-0.315492957746478
4089.11549295774648-1.11549295774648
417.99.11549295774648-1.21549295774648
428.19.11549295774648-1.01549295774648
439.39.115492957746480.184507042253522
449.49.115492957746480.284507042253521
459.49.115492957746480.284507042253521
469.39.115492957746480.184507042253522
4799.11549295774648-0.115492957746479
489.19.11549295774648-0.0154929577464794
499.79.115492957746480.58450704225352
509.79.115492957746480.58450704225352
519.69.115492957746480.48450704225352
528.39.11549295774648-0.815492957746478
538.29.11549295774648-0.91549295774648
548.49.11549295774648-0.715492957746479
5510.69.115492957746481.48450704225352
5610.99.115492957746481.78450704225352
5710.99.115492957746481.78450704225352
589.69.115492957746480.48450704225352
599.39.115492957746480.184507042253522
609.39.115492957746480.184507042253522
619.69.115492957746480.48450704225352
629.59.115492957746480.384507042253521
639.59.115492957746480.384507042253521
6499.11549295774648-0.115492957746479
658.99.11549295774648-0.215492957746479
6699.11549295774648-0.115492957746479
6710.19.115492957746480.98450704225352
6810.29.115492957746481.08450704225352
6910.29.115492957746481.08450704225352
709.59.115492957746480.384507042253521
719.39.115492957746480.184507042253522
729.39.115492957746480.184507042253522
739.49.115492957746480.284507042253521
749.39.115492957746480.184507042253522
759.19.11549295774648-0.0154929577464794
7699.11549295774648-0.115492957746479
778.99.11549295774648-0.215492957746479
7899.11549295774648-0.115492957746479
799.89.115492957746480.684507042253522
80109.115492957746480.884507042253521
819.89.115492957746480.684507042253522
829.49.115492957746480.284507042253521
8399.11549295774648-0.115492957746479
848.99.11549295774648-0.215492957746479
859.39.115492957746480.184507042253522
869.19.11549295774648-0.0154929577464794
878.89.11549295774648-0.315492957746478
888.99.11549295774648-0.215492957746479
898.79.11549295774648-0.41549295774648
908.69.11549295774648-0.51549295774648
919.19.11549295774648-0.0154929577464794
929.39.115492957746480.184507042253522
938.99.11549295774648-0.215492957746479
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/1gdnd1196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/1gdnd1196009949.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/2yol41196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/2yol41196009949.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/3q1t31196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/3q1t31196009949.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/4u6hf1196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/4u6hf1196009949.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/5vyq71196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/5vyq71196009949.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/6iqf41196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/6iqf41196009949.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/7kpsp1196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/7kpsp1196009949.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/8p3hj1196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/8p3hj1196009949.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/9j1pj1196009949.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/25/t1196009479zfyhlg734xzmdh7/9j1pj1196009949.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by