Home » date » 2007 » Nov » 21 » attachments

Stat Opdr3 Q3-3

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Wed, 21 Nov 2007 06:36:07 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv.htm/, Retrieved Wed, 21 Nov 2007 14:34:38 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
3 804 0 3 491 0 4 151 0 4 254 0 4 717 0 4 866 0 4 001 0 3 758 0 4 780 0 5 016 0 4 296 0 4 467 0 3 891 0 3 872 0 3 867 0 3 973 0 4 640 0 4 538 0 3 836 0 3 770 0 4 374 0 4 497 0 3 945 0 3 862 0 3 608 0 3 301 0 3 882 0 3 605 0 4 305 0 4 216 0 3 971 0 3 988 0 4 317 0 4 484 0 4 247 0 3 520 0 3 686 0 3 403 0 3 990 0 4 053 0 4 548 0 4 559 0 3 922 0 4 209 0 4 517 0 4 386 0 3 221 0 3 127 0 3 777 0 3 322 0 3 899 1 4 033 1 4 463 1 4 819 1 4 246 1 4 255 1 4 760 1 4 581 1 4 309 1 4 016 1 3 601 1 3 257 1 3 823 1 3 940 1 4 534 1 4 575 1 3 953 1 4 206 1 4 649 1 4 353 1 3 835 1 3 944 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
d[t] = + 4.06381011360178 -0.000997140206824086b[t] + 0.377513336249788V3[t] -0.129077142629322M1[t] -0.406319224862594M2[t] + 0.0329291272892397M3[t] + 0.0835361072517711M4[t] + 0.650307396372812M5[t] + 0.719903916079853M6[t] + 0.121171868775522M7[t] + 0.173130306921246M8[t] + 0.716967371285332M9[t] + 0.712919767814436M10[t] + 0.144101926714828M11[t] -0.00877096709077283t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)4.063810113601780.12409332.748200
b-0.0009971402068240869.8e-05-10.126100
V30.3775133362497880.0968553.89770.0002580.000129
M1-0.1290771426293220.132275-0.97580.3332770.166638
M2-0.4063192248625940.130163-3.12160.0028230.001412
M30.03292912728923970.1336490.24640.8062690.403134
M40.08353610725177110.1305760.63980.5248980.262449
M50.6503073963728120.1303644.98846e-063e-06
M60.7199039160798530.1304655.5181e-060
M70.1211718687755220.1308610.9260.3583720.179186
M80.1731303069212460.1297671.33420.1874580.093729
M90.7169673712853320.1297965.52381e-060
M100.7129197678144360.1298975.48831e-060
M110.1441019267148280.1294461.11320.2702870.135144
t-0.008770967090772830.002157-4.06540.0001497.4e-05


Multiple Linear Regression - Regression Statistics
Multiple R0.925142872593637
R-squared0.855889334710807
Adjusted R-squared0.820493732709952
F-TEST (value)24.1806689624927
F-TEST (DF numerator)14
F-TEST (DF denominator)57
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.224163140490993
Sum Squared Residuals2.86419947262272


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
133.12426127759510-0.124261277595104
233.15035311300702-0.150353113007017
343.919858168388270.0801418316117342
443.858988739957140.141011260042856
543.955313146227860.0446868537721399
643.867564808027340.132435191972659
744.12258807253507-0.122588072535071
833.41094040702419-0.410940407024188
943.924069419747370.0759305802526282
1054.673065967199300.326934032800695
1143.816277901098180.183722098901821
1243.492894031925660.507105968074339
1332.932258474512150.0677415254878475
1432.665191089117770.334808910882235
1533.10065417521295-0.100654175212947
1633.03679332616135-0.0367933261613525
1743.926841337064040.0731586629359593
1844.08937519077637-0.0893751907763667
1933.18472439474768-0.184724394747685
2033.29372311945303-0.293723119453025
2144.22365673862868-0.223656738628677
2244.08818992262765-0.0881899226276457
2333.06388230178007-0.0638823017800735
2432.993772045140870.00622795485912769
2533.10919754795409-0.109197547954095
2633.12930654212504-0.129306542125044
2732.980445467021310.0195545329786887
2833.29848931718334-0.298489317183342
2944.15563170126084-0.155631701260836
3044.30520273228445-0.305202732284448
3132.944858861737160.0551411382628406
3232.97109494927610.0289050507238995
3344.17524212532838-0.175242125328376
3443.995901140227080.00409885977291507
3543.654634561054010.345365438945989
3633.22954239078544-0.229542390785436
3732.926169006732540.0738309932674578
3832.922346635939710.0776533640602866
3932.767502719595040.232497280404964
4043.743659106260960.256340893739036
4143.808075025913310.191924974086691
4243.857932036254510.142067963745487
4332.888467126782270.111532873217734
4443.642615565302790.357384434697211
4543.870562478874280.129437521125715
4643.988369275406570.0116307245934289
4733.57530860134216-0.575308601342164
4833.51616688697803-0.516166886978028
4932.730177642822280.269822357177724
5032.897863387603190.102136612396809
5133.13050420957654-0.130504209576542
5244.03586364155796-0.0358636415579589
5344.16509367465387-0.16509367465387
5443.870937313640760.129062686359236
5543.834795637755860.165204362244139
5643.869008846949400.130991153050605
5743.900519139776550.0994808602234545
5844.06618866623639-0.066188666236388
5943.759821994302160.240178005697842
6043.899111181096010.100888818903985
6133.17793605038383-0.177936050383829
6233.23493923220727-0.23493923220727
6333.1010352602059-0.101035260205898
6433.02620586887924-0.0262058688792390
6543.989045114880090.0109548851199144
6644.00898791901657-0.00898791901656703
6733.02456590644196-0.0245659064419586
6843.81261711199450.187382888005499
6943.905950097644740.094049902355255
7044.18828502830301-0.188285028303006
7133.13007464042341-0.130074640423415
7232.868513464073990.131486535926011
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/191z21195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/191z21195652162.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/26fzv1195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/26fzv1195652162.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/3ix011195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/3ix011195652162.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/4p60c1195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/4p60c1195652162.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/529sr1195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/529sr1195652162.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/650in1195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/650in1195652162.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/7x2cl1195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/7x2cl1195652162.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/8v0c81195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/8v0c81195652162.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/9pm1r1195652162.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195652068k6gvn55bc10pibv/9pm1r1195652162.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by