Home » date » 2007 » Nov » 21 » attachments

invoering euro vs textielproductie

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Wed, 21 Nov 2007 06:35:06 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr.htm/, Retrieved Wed, 21 Nov 2007 14:29:56 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
1 88.2 1 73.4 1 81.3 1 89.4 1 80.7 1 80.1 1 100.8 1 97.0 1 93.6 1 67.1 1 88.7 1 89.1 1 98.7 1 76.0 1 81.6 1 92.9 1 84.8 1 79.4 1 100.3 1 90.7 1 84.2 1 69.9 1 85.3 1 81.5 1 92.4 1 71.2 1 74.5 1 86.4 1 73.6 1 80.1 1 91.0 1 87.3 1 78.8 1 72.4 1 83.1 1 90.0 1 99.8 1 73.1 1 80.8 1 92.0 1 75.1 1 84.2 1 99.6 1 89.5 1 87.8 1 70.5 1 80.7 1 94.1 1 97.2 1 66.5 1 81.4 1 82.5 1 76.1 1 88.0 1 90.0 1 94.3 1 96.4 1 68.0 1 82.1 1 103.0 1 109.7 1 75.1 1 88.0 1 86.4 1 84.4 1 91.1 1 96.4 1 94.9 1 94.1 0 71.9 0 93.4 0 108.2 0 104.1 0 80.6 0 86.4 0 98.3 0 94.3 0 88.6 0 109.2 0 102.0 0 101.3
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 98.3519097222222 -7.36510416666666X[t] + 4.69468625992064M1[t] -20.2410838293651M2[t] -11.9911396329365M3[t] -4.34119543650794M4[t] -12.8055369543651M5[t] -9.6413070436508M6[t] + 3.99435143849206M7[t] -0.569990079365075M8[t] -3.4057601686508M9[t] -24.2498883928571M10[t] -8.71661086309524M11[t] + 0.0500558035714289t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)98.35190972222223.21935430.550200
X-7.365104166666661.918055-3.83990.0002760.000138
M14.694686259920642.6824111.75020.0846660.042333
M2-20.24108382936512.681282-7.54900
M3-11.99113963293652.680471-4.47353.1e-051.5e-05
M4-4.341195436507942.67998-1.61990.109960.05498
M5-12.80553695436512.679809-4.77851e-055e-06
M6-9.64130704365082.679958-3.59760.000610.000305
M73.994351438492062.6804271.49020.1408670.070433
M8-0.5699900793650752.681215-0.21260.8322950.416147
M9-3.40576016865082.682322-1.26970.2085820.104291
M10-24.24988839285712.781336-8.718800
M11-8.716610863095242.780874-3.13450.0025550.001278
t0.05005580357142890.0292751.70990.0919170.045958


Multiple Linear Regression - Regression Statistics
Multiple R0.904758360115568
R-squared0.818587690199012
Adjusted R-squared0.78338828680479
F-TEST (value)23.2557262698775
F-TEST (DF numerator)13
F-TEST (DF denominator)67
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4.81634859434812
Sum Squared Residuals1554.2133234127


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
188.295.7315476190477-7.53154761904765
273.470.84583333333342.55416666666663
381.379.14583333333342.15416666666664
489.486.84583333333332.55416666666666
580.778.43154761904762.26845238095237
680.181.6458333333333-1.54583333333332
7100.895.33154761904765.4684523809524
89790.81726190476196.18273809523812
993.688.03154761904765.56845238095239
1067.167.2374751984127-0.137475198412703
1188.782.8208085317465.87919146825399
1289.191.5874751984127-2.48747519841271
1398.796.33221726190472.36778273809525
147671.44650297619054.55349702380954
1581.679.74650297619051.85349702380953
1692.987.44650297619055.45349702380954
1784.879.03221726190475.76778273809524
1879.482.2465029761905-2.84650297619047
19100.395.93221726190484.36778273809524
2090.791.417931547619-0.717931547619043
2184.288.6322172619048-4.43221726190476
2269.967.83814484126982.06185515873017
2385.383.42147817460321.87852182539682
2481.592.1881448412698-10.6881448412698
2592.496.9328869047619-4.53288690476189
2671.272.0471726190476-0.847172619047602
2774.580.3471726190476-5.84717261904761
2886.488.0471726190476-1.64717261904761
2973.679.6328869047619-6.0328869047619
3080.182.8471726190476-2.74717261904762
319196.5328869047619-5.53288690476191
3287.392.0186011904762-4.7186011904762
3378.889.2328869047619-10.4328869047619
3472.468.4388144841273.96118551587302
3583.184.0221478174603-0.922147817460325
369092.788814484127-2.78881448412699
3799.897.5335565476192.26644345238095
3873.172.64784226190480.452157738095243
3980.880.9478422619048-0.147842261904760
409288.64784226190483.35215773809524
4175.180.233556547619-5.13355654761905
4284.283.44784226190480.752157738095237
4399.697.1335565476192.46644345238094
4489.592.6192708333333-3.11927083333334
4587.889.833556547619-2.03355654761905
4670.569.03948412698411.46051587301587
4780.784.6228174603175-3.92281746031746
4894.193.38948412698410.710515873015865
4997.298.1342261904762-0.934226190476187
5066.573.2485119047619-6.7485119047619
5181.481.5485119047619-0.148511904761898
5282.589.2485119047619-6.74851190476191
5376.180.8342261904762-4.7342261904762
548884.04851190476193.95148809523809
559097.7342261904762-7.7342261904762
5694.393.21994047619051.08005952380951
5796.490.43422619047625.96577380952381
586869.6401537698413-1.64015376984128
5982.185.2234871031746-3.12348710317462
6010393.99015376984139.00984623015872
61109.798.734895833333310.9651041666667
6275.173.8491815476191.25081845238095
638882.1491815476195.85081845238095
6486.489.849181547619-3.44918154761905
6584.481.43489583333332.96510416666666
6691.184.6491815476196.45081845238094
6796.498.3348958333333-1.93489583333334
6894.993.82061011904761.07938988095237
6994.191.03489583333333.06510416666665
7071.977.605927579365-5.70592757936507
7193.493.18926091269840.210739087301597
72108.2101.9559275793656.24407242063493
73104.1106.700669642857-2.60066964285713
7480.681.8149553571428-1.21495535714285
7586.490.1149553571428-3.71495535714284
7698.397.81495535714280.485044642857148
7794.389.4006696428574.89933035714287
7888.692.6149553571428-4.01495535714286
79109.2106.3006696428572.89933035714287
80102101.7863839285710.213616071428576
81101.399.00066964285712.29933035714286
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/13nfk1195652098.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/13nfk1195652098.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/2yflw1195652099.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/2yflw1195652099.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/38ndi1195652099.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/38ndi1195652099.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/4bhmy1195652099.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/4bhmy1195652099.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/5g1mo1195652099.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/5g1mo1195652099.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/6zxi21195652099.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/6zxi21195652099.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/7wq5f1195652099.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/7wq5f1195652099.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/84d291195652099.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/84d291195652099.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/9h0fb1195652099.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195651785g67q5xc25ekjylr/9h0fb1195652099.ps (open in new window)


 
Parameters:
par1 = 2 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by