Home » date » 2007 » Nov » 21 » attachments

Seatbelt Case: Q3

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Wed, 21 Nov 2007 06:13:21 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs.htm/, Retrieved Wed, 21 Nov 2007 14:08:06 +0100
 
User-defined keywords:
Jeroen Goetschalckx, Nick Vandewalle, Jef Jacobs, Nick Van Hove, Michiel Van den Broeck
 
Dataseries X:
» Textbox « » Textfile « » CSV «
3.926 0 3.517 0 4.142 0 4.353 0 5.029 0 4.755 0 3.862 0 4.406 0 4.567 0 4.863 0 4.121 0 3.626 0 3.804 0 3.491 0 4.151 0 4.254 0 4.717 0 4.866 0 4.001 0 3.758 0 4.78 0 5.016 0 4.296 0 4.467 0 3.891 1 3.872 1 3.867 1 3.973 1 4.64 1 4.538 1 3.836 1 3.77 1 4.374 1 4.497 1 3.945 1 3.862 1 3.608 1 3.301 1 3.882 1 3.605 1 4.305 1 4.216 1 3.971 1 3.988 1 4.317 1 4.484 1 4.247 1 3.52 1 3.687 1 3.405 1 3.99 1 4.047 1 4.549 1 4.559 1 3.926 1 4.206 1 4.517 1 4.387 1 3.219 1 3.129 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Ongevallen[t] = + 3.88783333333333 -0.278388888888889Superboete[t] + 0.0623999999999995M1[t] -0.203600000000000M2[t] + 0.2856M3[t] + 0.325599999999999M4[t] + 0.9272M5[t] + 0.866M6[t] + 0.198400000000001M7[t] + 0.304800000000000M8[t] + 0.7902M9[t] + 0.9286M10[t] + 0.2448M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)3.887833333333330.11138634.904200
Superboete-0.2783888888888890.061881-4.49884.5e-052.2e-05
M10.06239999999999950.1485150.42020.6762830.338141
M2-0.2036000000000000.148515-1.37090.1769150.088457
M30.28560.1485151.9230.0605450.030273
M40.3255999999999990.1485152.19240.0333390.01667
M50.92720.1485156.243200
M60.8660.1485155.831100
M70.1984000000000010.1485151.33590.1880160.094008
M80.3048000000000000.1485152.05230.0457310.022865
M90.79020.1485155.32073e-061e-06
M100.92860.1485156.252600
M110.24480.1485151.64830.1059560.052978


Multiple Linear Regression - Regression Statistics
Multiple R0.885383827025225
R-squared0.783904521157833
Adjusted R-squared0.728731207410897
F-TEST (value)14.2080376892599
F-TEST (DF numerator)12
F-TEST (DF denominator)47
p-value7.83861864306346e-12
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.234822188149419
Sum Squared Residuals2.59164862222222


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
13.9263.95023333333333-0.0242333333333342
23.5173.68423333333333-0.167233333333334
34.1424.17343333333333-0.031433333333333
44.3534.213433333333330.139566666666667
55.0294.815033333333330.213966666666667
64.7554.753833333333330.00116666666666764
73.8624.08623333333333-0.224233333333333
84.4064.192633333333330.213366666666666
94.5674.67803333333333-0.111033333333334
104.8634.816433333333330.0465666666666665
114.1214.13263333333333-0.0116333333333341
123.6263.88783333333333-0.261833333333332
133.8043.95023333333333-0.146233333333333
143.4913.68423333333333-0.193233333333333
154.1514.17343333333333-0.0224333333333337
164.2544.213433333333330.0405666666666664
174.7174.81503333333333-0.0980333333333334
184.8664.753833333333330.112166666666666
194.0014.08623333333333-0.0852333333333333
203.7584.19263333333333-0.434633333333333
214.784.678033333333330.101966666666667
225.0164.816433333333330.199566666666667
234.2964.132633333333330.163366666666667
244.4673.887833333333330.579166666666666
253.8913.671844444444440.219155555555556
263.8723.405844444444440.466155555555556
273.8673.89504444444444-0.0280444444444448
283.9733.935044444444440.0379555555555555
294.644.536644444444440.103355555555555
304.5384.475444444444440.0625555555555555
313.8363.807844444444450.0281555555555550
323.773.91424444444444-0.144244444444444
334.3744.39964444444444-0.0256444444444447
344.4974.53804444444444-0.0410444444444445
353.9453.854244444444440.0907555555555555
363.8623.609444444444440.252555555555556
373.6083.67184444444444-0.0638444444444441
383.3013.40584444444444-0.104844444444444
393.8823.89504444444444-0.0130444444444446
403.6053.93504444444444-0.330044444444444
414.3054.53664444444444-0.231644444444445
424.2164.47544444444444-0.259444444444444
433.9713.807844444444440.163155555555555
443.9883.914244444444440.0737555555555555
454.3174.39964444444444-0.0826444444444441
464.4844.53804444444444-0.0540444444444444
474.2473.854244444444440.392755555555556
483.523.60944444444444-0.0894444444444444
493.6873.671844444444440.0151555555555556
503.4053.40584444444444-0.000844444444444653
513.993.895044444444440.0949555555555554
524.0473.935044444444440.111955555555555
534.5494.536644444444440.0123555555555559
544.5594.475444444444450.0835555555555553
553.9263.807844444444450.118155555555555
564.2063.914244444444440.291755555555556
574.5174.399644444444440.117355555555556
584.3874.53804444444444-0.151044444444445
593.2193.85424444444444-0.635244444444445
603.1293.60944444444444-0.480444444444444
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/1m4mt1195650795.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/1m4mt1195650795.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/26kyq1195650795.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/26kyq1195650795.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/3w0hm1195650795.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/3w0hm1195650795.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/4av4e1195650795.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/4av4e1195650795.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/5i8tt1195650795.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/5i8tt1195650795.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/65bd41195650795.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/65bd41195650795.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/7bh741195650796.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/7bh741195650796.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/8jxzq1195650796.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/8jxzq1195650796.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/9fop51195650796.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195650476dl20b1lscn6k1vs/9fop51195650796.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by