Home » date » 2007 » Nov » 21 » attachments

Seatbelt law

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Wed, 21 Nov 2007 05:36:11 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1.htm/, Retrieved Wed, 21 Nov 2007 13:30:53 +0100
 
User-defined keywords:
textiel met monthly dummies en lineair trends
 
Dataseries X:
» Textbox « » Textfile « » CSV «
101.5 0 99.2 0 107.8 0 92.3 0 99.2 0 101.6 0 87 0 71.4 0 104.7 0 115.1 0 102.5 0 75.3 0 96.7 1 94.6 1 98.6 1 99.5 1 92 1 93.6 1 89.3 1 66.9 1 108.8 1 113.2 1 105.5 1 77.8 1 102.1 1 97 1 95.5 1 99.3 1 86.4 1 92.4 1 85.7 1 61.9 1 104.9 1 107.9 1 95.6 1 79.8 1 94.8 1 93.7 1 108.1 1 96.9 1 88.8 1 106.7 1 86.8 1 69.8 1 110.9 1 105.4 1 99.2 1 84.4 1 87.2 1 91.9 1 97.9 1 94.5 1 85 1 100.3 1 78.7 1 65.8 1 104.8 1 96 1 103.3 1 82.9 1 91.4 1 94.5 1 109.3 1 92.1 1 99.3 1 109.6 1 87.5 1 73.1 1 110.7 1 111.6 1 110.7 1 84 1 101.6 1 102.1 1 113.9 1 99 1 100.4 1 109.5 1 93 1 76.8 1 105.3 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
y[t] = + 81.0978124999999 -5.16078124999995x[t] + 16.3589279513888M1[t] + 15.9374317956349M2[t] + 24.1445070684524M3[t] + 15.8372966269841M4[t] + 12.5300861855159M5[t] + 21.3800186011905M6[t] + 6.18709387400795M7[t] -11.3772594246032M8[t] + 26.3012444196429M9[t] + 27.6858494543651M10[t] + 22.1929247271826M11[t] + 0.0929247271825398t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)81.09781249999992.44663433.146700
x-5.160781249999952.000773-2.57940.0120980.006049
M116.35892795138882.8013085.839700
M215.93743179563492.7994885.69300
M324.14450706845242.7980018.629200
M415.83729662698412.7968465.662600
M512.53008618551592.7960244.48143e-051.5e-05
M621.38001860119052.7955357.647900
M76.187093874007952.795382.21330.0302850.015142
M8-11.37725942460322.795558-4.06980.0001276.3e-05
M926.30124441964292.796079.406500
M1027.68584945436512.9012859.542600
M1122.19292472718262.9008037.650600
t0.09292472718253980.0305373.0430.0033440.001672


Multiple Linear Regression - Regression Statistics
Multiple R0.924878815061786
R-squared0.855400822550093
Adjusted R-squared0.827344265731454
F-TEST (value)30.4884461796049
F-TEST (DF numerator)13
F-TEST (DF denominator)67
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation5.02406007724201
Sum Squared Residuals1691.15903720238


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1101.597.54966517857183.95033482142816
299.297.221093751.97890625
3107.8105.521093752.27890625000002
492.397.3068080357142-5.00680803571423
599.294.09252232142865.10747767857144
6101.6103.035379464286-1.43537946428569
78787.9353794642857-0.935379464285681
871.470.46395089285710.936049107142891
9104.7108.235379464286-3.5353794642857
10115.1109.7129092261905.38709077380959
11102.5104.312909226190-1.81290922619042
1275.382.2129092261904-6.91290922619044
1396.793.50398065476183.19601934523818
1494.693.17540922619051.42459077380952
1598.6101.475409226190-2.87540922619048
1699.593.26112351190486.23887648809523
179290.0468377976191.95316220238095
1893.698.9896949404762-5.38969494047620
1989.383.88969494047625.41030505952381
2066.966.41826636904760.481733630952386
21108.8104.1896949404764.61030505952381
22113.2105.6672247023817.53277529761904
23105.5100.2672247023815.23277529761904
2477.878.167224702381-0.367224702380958
25102.194.61907738095237.48092261904768
269794.2905059523812.70949404761905
2795.5102.590505952381-7.09050595238095
2899.394.37622023809524.92377976190475
2986.491.1619345238095-4.76193452380952
3092.4100.104791666667-7.70479166666666
3185.785.00479166666670.695208333333334
3261.967.5333630952381-5.6333630952381
33104.9105.304791666667-0.404791666666663
34107.9106.7823214285711.11767857142857
3595.6101.382321428571-5.78232142857144
3679.879.28232142857140.517678571428565
3794.895.7341741071428-0.934174107142794
3893.795.4056026785714-1.70560267857143
39108.1103.7056026785714.39439732142857
4096.995.49131696428571.40868303571428
4188.892.27703125-3.47703125000001
42106.7101.2198883928575.48011160714286
4386.886.11988839285710.680111607142851
4469.868.64845982142861.15154017857142
45110.9106.4198883928574.48011160714286
46105.4107.897418154762-2.49741815476191
4799.2102.497418154762-3.29741815476191
4884.480.39741815476194.00258184523809
4987.296.8492708333333-9.64927083333327
5091.996.520699404762-4.6206994047619
5197.9104.820699404762-6.9206994047619
5294.596.6064136904762-2.1064136904762
538593.3921279761905-8.39212797619048
54100.3102.334985119048-2.03498511904762
5578.787.2349851190476-8.53498511904762
5665.869.763556547619-3.96355654761906
57104.8107.534985119048-2.73498511904763
5896109.012514880952-13.0125148809524
59103.3103.612514880952-0.312514880952395
6082.981.51251488095241.38748511904762
6191.497.9643675595238-6.56436755952374
6294.597.6357961309524-3.13579613095239
63109.3105.9357961309523.36420386904761
6492.197.7215104166667-5.62151041666668
6599.394.5072247023814.79277529761904
66109.6103.4500818452386.1499181547619
6787.588.3500818452381-0.850081845238102
6873.170.87865327380952.22134672619046
69110.7108.6500818452382.0499181547619
70111.6110.1276116071431.47238839285712
71110.7104.7276116071435.97238839285714
728482.6276116071431.37238839285713
73101.699.07946428571422.52053571428577
74102.198.75089285714293.34910714285713
75113.9107.0508928571436.84910714285714
769998.83660714285710.163392857142846
77100.495.62232142857144.77767857142857
78109.5104.5651785714294.93482142857142
799389.46517857142863.53482142857142
8076.871.993754.80624999999999
81105.3109.765178571429-4.46517857142858
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/16h2c1195648562.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/16h2c1195648562.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/2mdio1195648562.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/2mdio1195648562.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/3uxd71195648562.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/3uxd71195648562.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/4rhsb1195648562.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/4rhsb1195648562.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/5vxi51195648562.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/5vxi51195648562.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/68v2i1195648563.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/68v2i1195648563.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/78c4r1195648563.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/78c4r1195648563.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/8a1g51195648563.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/8a1g51195648563.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/9fhxe1195648563.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195648242tlugvr8gym70xu1/9fhxe1195648563.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by