Home » date » 2007 » Nov » 21 » attachments

paper berekening met lineaire trend

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Wed, 21 Nov 2007 03:59:13 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk.htm/, Retrieved Wed, 21 Nov 2007 11:52:20 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
98,6 0 98 0 106,8 0 96,6 0 100,1 0 107,7 0 91,5 0 97,8 0 107,4 0 117,5 0 105,6 0 97,4 0 99,5 0 98 0 104,3 0 100,6 0 101,1 0 103,9 0 96,9 0 95,5 0 108,4 0 117 0 103,8 0 100,8 0 110,6 0 104 0 112,6 0 107,3 0 98,9 0 109,8 0 104,9 0 102,2 0 123,9 0 124,9 0 112,7 0 121,9 0 100,6 0 104,3 1 120,4 1 107,5 1 102,9 1 125,6 1 107,5 1 108,8 1 128,4 1 121,1 1 119,5 1 128,7 1 108,7 1 105,5 1 119,8 1 111,3 1 110,6 1 120,1 1 97,5 1 107,7 1 127,3 1 117,2 1 119,8 1 116,2 1 111 1 112,4 1 130,6 1 109,1 1 118,8 1 123,9 1 101,6 1 112,8 1 128 1 129,6 1 125,8 1 119,5 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
x[t] = + 102.945194940055 + 1.94092325120366y[t] -6.26354982850302M1[t] -7.96245791245792M2[t] + 3.84545454545455M3[t] -6.746632996633M4[t] -6.98872053872053M5[t] + 2.53585858585859M6[t] -12.8895622895623M7[t] -8.98164983164983M8[t] + 7.20959595959596M9[t] + 7.61750841750841M10[t] + 0.69208754208754M11[t] + 0.242087542087541t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)102.9451949400552.51090740.999200
y1.940923251203662.394920.81040.4210040.210502
M1-6.263549828503022.856369-2.19280.0323440.016172
M2-7.962457912457922.893955-2.75140.0079050.003952
M33.845454545454552.882831.33390.1874460.093723
M4-6.7466329966332.87284-2.34840.0222840.011142
M5-6.988720538720532.863996-2.44020.0177560.008878
M62.535858585858592.8563090.88780.378310.189155
M7-12.88956228956232.849788-4.5233.1e-051.5e-05
M8-8.981649831649832.844442-3.15760.0025250.001262
M97.209595959595962.8402772.53830.0138450.006923
M107.617508417508412.8372982.68480.0094470.004723
M110.692087542087542.8355090.24410.8080310.404016
t0.2420875420875410.0581594.16250.0001065.3e-05


Multiple Linear Regression - Regression Statistics
Multiple R0.899092095846177
R-squared0.808366596813071
Adjusted R-squared0.765414282305656
F-TEST (value)18.8200940061919
F-TEST (DF numerator)13
F-TEST (DF denominator)58
p-value3.33066907387547e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation4.91021278410465
Sum Squared Residuals1398.39099594072


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
198.696.92373265363881.67626734636123
29895.4669121117722.53308788822806
3106.8107.516912111772-0.716912111771939
496.697.166912111772-0.56691211177194
5100.197.1669121117722.93308788822804
6107.7106.9335787784390.766421221561388
791.591.7502454451053-0.250245445105314
897.895.90024544510531.89975455489471
9107.4112.333578778439-4.93357877843861
10117.5112.9835787784394.51642122156138
11105.6106.300245445105-0.700245445105284
1297.4105.850245445105-8.45024544510527
1399.599.8287831586898-0.328783158689799
149898.3719626168224-0.371962616822434
15104.3110.421962616822-6.12196261682244
16100.6100.0719626168220.528037383177562
17101.1100.0719626168221.02803738317756
18103.9109.838629283489-5.93862928348909
1996.994.65529595015582.24470404984424
2095.598.8052959501558-3.30529595015577
21108.4115.238629283489-6.8386292834891
22117115.8886292834891.11137071651090
23103.8109.205295950156-5.40529595015577
24100.8108.755295950156-7.95529595015577
25110.6102.7338336637407.8661663362597
26104101.2770131218732.72298687812708
27112.6113.327013121873-0.727013121872929
28107.3102.9770131218734.32298687812707
2998.9102.977013121873-4.07701312187292
30109.8112.743679788540-2.94367978853959
31104.997.56034645520637.33965354479375
32102.2101.7103464552060.489653544793747
33123.9118.1436797885405.75632021146041
34124.9118.7936797885406.10632021146041
35112.7112.1103464552060.589653544793748
36121.9111.66034645520610.2396535447937
37100.6105.638884168791-5.03888416879078
38104.3106.122986878127-1.82298687812708
39120.4118.1729868781272.22701312187293
40107.5107.822986878127-0.322986878127074
41102.9107.822986878127-4.92298687812707
42125.6117.5896535447948.01034645520626
43107.5102.4063202114605.0936797885396
44108.8106.5563202114602.24367978853959
45128.4122.9896535447945.41034645520626
46121.1123.639653544794-2.53965354479375
47119.5116.9563202114602.54367978853959
48128.7116.50632021146012.1936797885396
49108.7110.484857925045-1.78485792504493
50105.5109.028037383178-3.52803738317757
51119.8121.078037383178-1.27803738317757
52111.3110.7280373831780.571962616822431
53110.6110.728037383178-0.12803738317757
54120.1120.494704049844-0.394704049844239
5597.5105.311370716511-7.8113707165109
56107.7109.461370716511-1.76137071651089
57127.3125.8947040498441.40529595015576
58117.2126.544704049844-9.34470404984422
59119.8119.861370716511-0.0613707165109012
60116.2119.411370716511-3.21137071651090
61111113.389908430095-2.38990843009542
62112.4111.9330878882280.466912111771949
63130.6123.9830878882286.61691211177194
64109.1113.633087888228-4.53308788822806
65118.8113.6330878882285.16691211177195
66123.9123.3997545548950.500245445105281
67101.6108.216421221561-6.61642122156138
68112.8112.3664212215610.433578778438611
69128128.799754554895-0.799754554894722
70129.6129.4497545548950.150245445105276
71125.8122.7664212215613.03357877843861
72119.5122.316421221561-2.81642122156139
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/1c5j91195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/1c5j91195642748.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/2wt3c1195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/2wt3c1195642748.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/3svx81195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/3svx81195642748.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/4b3881195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/4b3881195642748.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/5f6zg1195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/5f6zg1195642748.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/6nqoj1195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/6nqoj1195642748.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/71xgq1195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/71xgq1195642748.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/8l5bj1195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/8l5bj1195642748.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/9nx601195642748.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t1195642310dzpyulpp9ncx8tk/9nx601195642748.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by