Home » date » 2007 » Nov » 21 » attachments

paper berekening zonder trend

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Wed, 21 Nov 2007 03:56:43 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4.htm/, Retrieved Wed, 21 Nov 2007 11:49:28 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
98,6 0 98 0 106,8 0 96,6 0 100,1 0 107,7 0 91,5 0 97,8 0 107,4 0 117,5 0 105,6 0 97,4 0 99,5 0 98 0 104,3 0 100,6 0 101,1 0 103,9 0 96,9 0 95,5 0 108,4 0 117 0 103,8 0 100,8 0 110,6 0 104 0 112,6 0 107,3 0 98,9 0 109,8 0 104,9 0 102,2 0 123,9 0 124,9 0 112,7 0 121,9 0 100,6 0 104,3 1 120,4 1 107,5 1 102,9 1 125,6 1 107,5 1 108,8 1 128,4 1 121,1 1 119,5 1 128,7 1 108,7 1 105,5 1 119,8 1 111,3 1 110,6 1 120,1 1 97,5 1 107,7 1 127,3 1 117,2 1 119,8 1 116,2 1 111 1 112,4 1 130,6 1 109,1 1 118,8 1 123,9 1 101,6 1 112,8 1 128 1 129,6 1 125,8 1 119,5 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
x[t] = + 108.755295950156 + 10.6560747663551y[t] -7.47398753894077M1[t] -10.3833333333333M2[t] + 1.66666666666666M3[t] -8.68333333333334M4[t] -8.68333333333334M5[t] + 1.08333333333333M6[t] -14.1M7[t] -9.95M8[t] + 6.48333333333334M9[t] + 7.13333333333333M10[t] + 0.449999999999995M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)108.7552959501562.35835846.114800
y10.65607476635511.3138088.110800
M1-7.473987538940773.210702-2.32780.023370.011685
M2-10.38333333333333.203227-3.24150.0019570.000979
M31.666666666666663.2032270.52030.6047960.302398
M4-8.683333333333343.203227-2.71080.0087760.004388
M5-8.683333333333343.203227-2.71080.0087760.004388
M61.083333333333333.2032270.33820.7364130.368206
M7-14.13.203227-4.40184.6e-052.3e-05
M8-9.953.203227-3.10620.0029120.001456
M96.483333333333343.2032272.0240.0475060.023753
M107.133333333333333.2032272.22690.0297820.014891
M110.4499999999999953.2032270.14050.8887570.444378


Multiple Linear Regression - Regression Statistics
Multiple R0.866671377162989
R-squared0.751119275993591
Adjusted R-squared0.700499467721101
F-TEST (value)14.8384456920553
F-TEST (DF numerator)12
F-TEST (DF denominator)59
p-value1.15463194561016e-13
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation5.54815171325898
Sum Squared Residuals1816.13725856698


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
198.6101.281308411215-2.68130841121474
29898.3719626168224-0.371962616822415
3106.8110.421962616822-3.62196261682244
496.6100.071962616822-3.47196261682244
5100.1100.0719626168220.0280373831775618
6107.7109.838629283489-2.13862928348910
791.594.6552959501558-3.15529595015576
897.898.8052959501558-1.00529595015577
9107.4115.238629283489-7.8386292834891
10117.5115.8886292834891.61137071651090
11105.6109.205295950156-3.60529595015577
1297.4108.755295950156-11.3552959501558
1399.5101.281308411215-1.78130841121500
149898.3719626168224-0.371962616822438
15104.3110.421962616822-6.12196261682243
16100.6100.0719626168220.528037383177566
17101.1100.0719626168221.02803738317756
18103.9109.838629283489-5.9386292834891
1996.994.65529595015582.24470404984424
2095.598.8052959501558-3.30529595015577
21108.4115.238629283489-6.8386292834891
22117115.8886292834891.11137071651090
23103.8109.205295950156-5.40529595015577
24100.8108.755295950156-7.95529595015577
25110.6101.2813084112159.318691588785
2610498.37196261682245.62803738317756
27112.6110.4219626168222.17803738317756
28107.3100.0719626168227.22803738317757
2998.9100.071962616822-1.17196261682243
30109.8109.838629283489-0.0386292834891033
31104.994.655295950155810.2447040498442
32102.298.80529595015583.39470404984423
33123.9115.2386292834898.6613707165109
34124.9115.8886292834899.0113707165109
35112.7109.2052959501563.49470404984424
36121.9108.75529595015613.1447040498442
37100.6101.281308411215-0.681308411215001
38104.3109.028037383178-4.72803738317757
39120.4121.078037383178-0.678037383177559
40107.5110.728037383178-3.22803738317756
41102.9110.728037383178-7.82803738317756
42125.6120.4947040498445.10529595015576
43107.5105.3113707165112.1886292834891
44108.8109.461370716511-0.661370716510902
45128.4125.8947040498442.50529595015577
46121.1126.544704049844-5.44470404984424
47119.5119.861370716511-0.361370716510897
48128.7119.4113707165119.28862928348909
49108.7111.937383177570-3.23738317757013
50105.5109.028037383178-3.52803738317757
51119.8121.078037383178-1.27803738317757
52111.3110.7280373831780.571962616822434
53110.6110.728037383178-0.128037383177572
54120.1120.494704049844-0.39470404984424
5597.5105.311370716511-7.8113707165109
56107.7109.461370716511-1.76137071651090
57127.3125.8947040498441.40529595015576
58117.2126.544704049844-9.34470404984423
59119.8119.861370716511-0.0613707165109002
60116.2119.411370716511-3.2113707165109
61111111.937383177570-0.937383177570131
62112.4109.0280373831783.37196261682243
63130.6121.0780373831789.52196261682243
64109.1110.728037383178-1.62803738317757
65118.8110.7280373831788.07196261682243
66123.9120.4947040498443.40529595015577
67101.6105.311370716511-3.71137071651091
68112.8109.4613707165113.3386292834891
69128125.8947040498442.10529595015576
70129.6126.5447040498443.05529595015576
71125.8119.8613707165115.9386292834891
72119.5119.4113707165110.0886292834890977
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/106t91195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/106t91195642586.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/2jdwy1195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/2jdwy1195642586.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/3ozge1195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/3ozge1195642586.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/4q79p1195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/4q79p1195642586.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/5q89s1195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/5q89s1195642586.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/6p2su1195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/6p2su1195642586.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/7lmmm1195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/7lmmm1195642586.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/8nkoo1195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/8nkoo1195642586.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/9cmbg1195642586.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/21/t11956421687xkuayqpksb0iw4/9cmbg1195642586.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by