Home » date » 2007 » Nov » 20 » attachments

Q3, w6, paper

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Tue, 20 Nov 2007 12:12:00 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1.htm/, Retrieved Tue, 20 Nov 2007 20:06:14 +0100
 
User-defined keywords:
paper, multiple regression
 
Dataseries X:
» Textbox « » Textfile « » CSV «
88.74 88.95 88.92 88.81 88.77 88.9 89.17 90.15 89.61 90.92 89.52 90.78 89.74 90.81 89.4 89.46 89.36 89.22 89.38 88.89 89.36 89.41 89.29 89.59 89.59 90.25 89.79 90.2 89.86 90.27 90.21 90.71 90.37 91.18 90.19 90.66 90.33 89.72 90.22 88.72 90.42 88.91 90.54 89.15 90.73 89.15 91.02 89.08 91.19 89.28 91.53 89.47 91.88 89.53 92.06 90.72 92.32 90.91 92.67 91.38 92.85 91.49 92.82 90.9 93.46 90.93 93.23 90.57 93.54 91.28 93.29 90.83 93.2 91.5 93.6 91.58 93.81 92.49 94.62 94.16 95.22 95.46 95.38 95.8 95.31 95.32 95.3 95.41 95.57 95.35 95.42 95.68 95.53 95.59 95.33 94.96 95.90 96.92 96.06 96.06 96.31 96.59 96.34 96.67 96.49 97.27 96.22 96.38 96.53 96.47 96.50 96.05 96.77 96.76 96.66 96.51 96.58 96.55 96.63 95.97 97.06 97.00 97.73 97.46 98.01 97.90 97.76 98.42 97.49 98.54 97.77 99.00 97.96 98.94 98.23 99.02 98.51 100.07 98.19 98.72 98.37 98.73 98.31 98.04 98.60 99.08 98.97 99.22 99.11 99.57 99.64 100.44 100.03 100.84 99.98 100.75 100.32 100.49 100.44 99.98 100.51 99.96 101.00 99.76 100.88 100.11 100.55 99.79 100.83 100.29 101.51 101.12 102.16 102.65 102.39 102.71 102.54 103.39 102.85 102.80 103.47 102.07 103.57 102.15 103.69 101.21 103.50 101.27 103.47 101.86 103.45 101.65 103.48 101.94 103.93 102.62 103.89 102.71 104.40 103.39 104.79 104.51 104.77 104.09 105.13 104.29 105.26 104.57 104.96 105.39 104.75 105.15 105.01 106.13 105.15 105.46 105.20 106.47 105.77 106.62 105.78 106.52 106.26 108.04 106.13 107.15 106.12 107.32 106.57 107.76 106.44 107.26 106.54 107.89
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 73.8042336411469 + 0.156334829849718X[t] + 0.0548151015977865M1[t] + 0.297576758775181M2[t] + 0.276411043319977M3[t] + 0.337865016199548M4[t] + 0.341348849186215M5[t] + 0.272164575593166M6[t] + 0.435077360364255M7[t] + 0.356009147021685M8[t] + 0.346983700939432M9[t] + 0.227580410026349M10[t] + 0.126346141928972M11[t] + 0.136100788004864t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)73.80423364114693.55979920.732700
X0.1563348298497180.0412993.78540.0002580.000129
M10.05481510159778650.214430.25560.7987450.399373
M20.2975767587751810.2142651.38880.1678820.083941
M30.2764110433199770.2159651.27990.203460.10173
M40.3378650161995480.2230981.51440.1329820.066491
M50.3413488491862150.2274731.50060.1365150.068257
M60.2721645755931660.2233461.21860.2257880.112894
M70.4350773603642550.2193611.98340.0499860.024993
M80.3560091470216850.2144251.66030.0998970.049948
M90.3469837009394320.2147931.61540.1092760.054638
M100.2275804100263490.2174671.04650.2977760.148888
M110.1263461419289720.2180980.57930.5636450.281823
t0.1361007880048640.00703719.341900


Multiple Linear Regression - Regression Statistics
Multiple R0.996923633472064
R-squared0.993856730975143
Adjusted R-squared0.993081366923462
F-TEST (value)1281.79366688516
F-TEST (DF numerator)13
F-TEST (DF denominator)103
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.46013305322092
Sum Squared Residuals21.8074099466398


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
188.7487.90113264588220.838867354117786
288.9288.25810821488530.661891785114661
388.7788.38711342212150.38288657787852
489.1788.7800867203180.389913279681941
589.6189.04004916029390.569950839706126
689.5289.08507879852670.434921201473268
789.7489.38878241619820.351217583801822
889.489.23476297056340.165237029436660
989.3689.3243179533220.0356820466779737
1089.3889.28942495656340.0905750434365953
1189.3689.4055855879927-0.0455855879927416
1289.2989.4434805034416-0.153480503441577
1389.5989.737577380745-0.147577380745045
1489.7990.1086230844348-0.318623084434817
1589.8690.234501595074-0.374501595073962
1690.2190.5008436810923-0.290843681092279
1790.3790.7139056721132-0.343905672113169
1890.1990.6995280750031-0.509528075003136
1990.3390.8515869077203-0.521586907720353
2090.2290.752284652533-0.532284652532929
2190.4290.909063612127-0.489063612126983
2290.5490.9632814683827-0.423281468382694
2390.7390.9981479882902-0.268147988290183
2491.0290.99695919627660.0230408037233981
2591.1991.2191420518492-0.0291420518491953
2691.5391.6277081147029-0.097708114702897
2791.8891.75202327704350.127976722956454
2892.0692.1356164854491-0.0756164854491397
2992.3292.30490472411210.0150952758878739
3092.6792.44529860855330.224701391446699
3192.8592.76150901261270.08849098738727
3292.8292.72630403766370.0936959623363068
3393.4692.85806942448180.601930575518205
3493.2392.81848638282770.411513617172335
3593.5492.96435063192850.575649368071547
3693.2992.9037546045720.386245395428029
3793.293.1994148301740.000585169826062811
3893.693.59078406174420.00921593825581825
3993.8193.847983829457-0.0379838294570775
4094.6294.30661775619050.313382243809459
4195.2294.64943765598670.570562344013289
4295.3894.76950801254740.610491987452565
4395.3194.99348086699550.316519133004485
4495.395.06458357634430.23541642365571
4595.5795.1822788284760.387721171524078
4695.4295.25056681941810.169433180581896
4795.5395.27136320463910.258636795360883
4895.3395.18262690790970.147373092090312
4995.995.67995906401780.22004093598222
5096.0695.92437355552930.135626444470715
5196.3196.12216608789930.187833912100703
5296.3496.33222763517170.007772364828292
5396.4996.565613154073-0.0756131540730777
5496.2296.4933916699186-0.27339166991864
5596.5396.806475377381-0.276475377381066
5696.596.7978473235065-0.297847323506479
5796.7797.0359203946224-0.265920394622396
5896.6697.0135341842517-0.353534184251747
5996.5897.0546540973532-0.474654097353221
6096.6396.9737345421163-0.343734542116279
6197.0697.3256753064641-0.265675306464133
6297.7397.7764517733773-0.04645177337726
6398.0197.96017417106080.0498258289392028
6497.7698.239023043467-0.479023043467086
6597.4998.3973678440406-0.907367844040594
6697.7798.5361983801833-0.766198380183278
6797.9698.8258318631682-0.86583186316825
6898.2398.8953712242185-0.665371224218511
6998.5199.1865981374833-0.676598137483325
7098.1998.992243614278-0.802243614277995
7198.3799.028673482484-0.658673482483973
7298.3198.9305570959636-0.620557095963563
7398.699.28406120861-0.684061208609927
7498.9799.6848105299711-0.714810529971143
7599.1199.8544627929682-0.744462792968203
7699.64100.188028855822-0.548028855821893
77100.03100.390147408753-0.360147408753312
7899.98100.442993788479-0.462993788478649
79100.32100.701360305494-0.381360305493685
80100.44100.678662116933-0.23866211693262
81100.51100.802610762258-0.292610762258228
82101100.788041293380.211958706619928
83100.88100.8776250037350.0023749962650349
84100.55100.837352504259-0.287352504258947
85100.83101.106435808786-0.276435808786456
86101.51101.615056162744-0.105056162743974
87102.16101.9691835249640.190816475036287
88102.39102.1761183756390.213881624360874
89102.54102.4220106809280.117989319071539
90102.85102.3966896457290.453310354271046
91103.47102.5815787927150.888421207285392
92103.57102.6511181537650.918881846235113
93103.69102.6312387556291.05876124437124
94103.5102.6573163425120.84268365748848
95103.47102.7844204120300.685579587969658
96103.45102.7613447438380.68865525616221
97103.48102.9975977340970.482402265903143
98103.93103.4827678635770.447232136423077
99103.89103.6117730708130.278226929186937
100104.4103.9156355159950.484364484004697
101104.79104.2303151464190.559684853581482
102104.77104.2315710322930.538428967706538
103105.13104.5618515710390.56814842896064
104105.26104.6626578980600.597342101940437
105104.96104.9179278004590.0420721995410439
106104.75104.897104938387-0.147104938386800
107105.01105.085179591547-0.075179591547005
108105.15104.9901899016240.159810098376415
109105.2105.339003969374-0.139003969374454
110105.77105.7413166390340.0286833609658205
111105.78105.840618228599-0.0606182285988618
112106.26106.275801930855-0.0158019308548665
113106.13106.276248553280-0.146248553280158
114106.12106.369741988766-0.249741988766414
115106.57106.737542886676-0.167542886676257
116106.44106.716408046414-0.276408046413688
117106.54106.941974331142-0.401974331141612
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/1klfo1195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/1klfo1195585910.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/2gv8m1195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/2gv8m1195585910.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/38y3h1195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/38y3h1195585910.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/4m8s51195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/4m8s51195585910.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/5a4381195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/5a4381195585910.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/6kmww1195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/6kmww1195585910.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/71w0c1195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/71w0c1195585910.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/8dmo51195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/8dmo51195585910.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/97tij1195585910.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195585574n6kc1snv39g1oi1/97tij1195585910.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by