Home » date » 2007 » Nov » 20 » attachments

paper (Q3 W6)

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Tue, 20 Nov 2007 11:22:48 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht.htm/, Retrieved Tue, 20 Nov 2007 19:16:18 +0100
 
User-defined keywords:
paper, q3, W6, multiple regression
 
Dataseries X:
» Textbox « » Textfile « » CSV «
95.90 96.92 96.06 96.06 96.31 96.59 96.34 96.67 96.49 97.27 96.22 96.38 96.53 96.47 96.50 96.05 96.77 96.76 96.66 96.51 96.58 96.55 96.63 95.97 97.06 97.00 97.73 97.46 98.01 97.90 97.76 98.42 97.49 98.54 97.77 99.00 97.96 98.94 98.23 99.02 98.51 100.07 98.19 98.72 98.37 98.73 98.31 98.04 98.60 99.08 98.97 99.22 99.11 99.57 99.64 100.44 100.03 100.84 99.98 100.75 100.32 100.49 100.44 99.98 100.51 99.96 101.00 99.76 100.88 100.11 100.55 99.79 100.83 100.29 101.51 101.12 102.16 102.65 102.39 102.71 102.54 103.39 102.85 102.80 103.47 102.07 103.57 102.15 103.69 101.21 103.50 101.27 103.47 101.86 103.45 101.65 103.48 101.94 103.93 102.62 103.89 102.71 104.40 103.39 104.79 104.51 104.77 104.09 105.13 104.29 105.26 104.57 104.96 105.39 104.75 105.15 105.01 106.13 105.15 105.46 105.20 106.47 105.77 106.62 105.78 106.52 106.26 108.04 106.13 107.15 106.12 107.32 106.57 107.76 106.44 107.26 106.54 107.89
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 89.9393085089868 + 0.0538729697220403X[t] + 0.163315226142462t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)89.93930850898685.9169615.200300
X0.05387296972204030.0621680.86660.3893180.194659
t0.1633152261424620.0109614.900400


Multiple Linear Regression - Regression Statistics
Multiple R0.991872264789074
R-squared0.983810589657807
Adjusted R-squared0.98332000146562
F-TEST (value)2005.36948366148
F-TEST (DF numerator)2
F-TEST (DF denominator)66
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.450705785203678
Sum Squared Residuals13.4069565178602


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
195.995.32399196058940.576008039410576
296.0695.4409764327710.619023567229067
396.3195.6328443328660.677155667133924
496.3495.80046939658630.5395306034137
596.4995.9961084045620.493891595438005
696.2296.11147668765180.108523312348163
796.5396.27964048106930.25035951893072
896.596.42032905992850.079670940071514
996.7796.62189409457360.148105905426399
1096.6696.7717410782855-0.111741078285552
1196.5896.9372112232169-0.357211223216894
1296.6397.0692801269206-0.439280126920575
1397.0697.2880845118767-0.228084511876732
1497.7397.47618130409130.253818695908669
1598.0197.66320063691150.34679936308851
1697.7697.8545298073094-0.0945298073094129
1797.4998.0243097898185-0.53430978981853
1897.7798.2124065820331-0.442406582033129
1997.9698.3724894299923-0.412489429992271
2098.2398.5401144937125-0.310114493712486
2198.5198.759996338063-0.249996338063089
2298.1998.8505830550808-0.660583055080804
2398.3799.0144370109205-0.64443701092048
2498.3199.1405798879547-0.830579887954736
2598.699.3599230026081-0.759923002608128
2698.9799.5307804445117-0.560780444511671
2799.1199.7129512100568-0.602951210056846
2899.6499.9231359198575-0.283135919857482
29100.03100.108000333889-0.07800033388876
3099.98100.266466992756-0.286466992756235
31100.32100.415775246771-0.0957752467709772
32100.44100.551615258355-0.111615258355194
33100.51100.713853025103-0.203853025103208
34101100.8663936573010.133606342698733
35100.88101.048564422846-0.168564422846448
36100.55101.194640298678-0.644640298677855
37100.83101.384892009681-0.554892009681336
38101.51101.592921800693-0.0829218006930849
39102.16101.8386626705100.321337329489723
40102.39102.0052102748360.384789725163943
41102.54102.2051591203900.334840879610499
42102.85102.3366892943960.513310705604029
43103.47102.4606772526411.00932274735866
44103.57102.6283023163620.94169768363843
45103.69102.7409769509650.949023049034691
46103.5102.9075245552910.592475444708908
47103.47103.1026248335700.367375166430441
48103.45103.2546267360700.195373263929612
49103.48103.4335651234320.0464348765677601
50103.93103.6335139689860.296486031014313
51103.89103.8016777624030.0883222375968617
52104.4104.0016266079570.398373392043417
53104.79104.2252795601880.56472043981227
54104.77104.3659681390470.404031860953055
55105.13104.5400579591340.589942040866185
56105.26104.7184576167980.541542383201561
57104.96104.9259486781130.0340513218870146
58104.75105.076334391522-0.326334391522152
59105.01105.292445127992-0.282445127992208
60105.15105.419665464421-0.269665464420902
61105.2105.637392389983-0.437392389982628
62105.77105.808788561583-0.0387885615834027
63105.78105.966716490754-0.186716490753655
64106.26106.2119186308740.0480813691263848
65106.13106.327286913963-0.197286913963471
66106.12106.499760544959-0.37976054495867
67106.57106.686779877779-0.116779877778842
68106.44106.823158619060-0.383158619060279
69106.54107.020413816128-0.480413816127617
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/1yq6e1195582958.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/1yq6e1195582958.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/2rifz1195582958.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/2rifz1195582958.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/3tbm61195582958.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/3tbm61195582958.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/4x1m11195582958.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/4x1m11195582958.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/5pswo1195582958.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/5pswo1195582958.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/6vpai1195582958.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/6vpai1195582958.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/76mg51195582959.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/76mg51195582959.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/81ame1195582959.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/81ame1195582959.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/9ba891195582959.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195582578mtt24c2r8m4alht/9ba891195582959.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by