Home » date » 2007 » Nov » 20 » attachments

paper (Q3 W6)

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Tue, 20 Nov 2007 10:56:04 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml.htm/, Retrieved Tue, 20 Nov 2007 18:49:26 +0100
 
User-defined keywords:
paper, Q3, multiple regression
 
Dataseries X:
» Textbox « » Textfile « » CSV «
95,90 96,92 96,06 96,06 96,31 96,59 96,34 96,67 96,49 97,27 96,22 96,38 96,53 96,47 96,50 96,05 96,77 96,76 96,66 96,51 96,58 96,55 96,63 95,97 97,06 97,00 97,73 97,46 98,01 97,90 97,76 98,42 97,49 98,54 97,77 99,00 97,96 98,94 98,23 99,02 98,51 100,07 98,19 98,72 98,37 98,73 98,31 98,04 98,60 99,08 98,97 99,22 99,11 99,57 99,64 100,44 100,03 100,84 99,98 100,75 100,32 100,49 100,44 99,98 100,51 99,96 101,00 99,76 100,88 100,11 100,55 99,79 100,83 100,29 101,51 101,12 102,16 102,65 102,39 102,71 102,54 103,39 102,85 102,80 103,47 102,07 103,57 102,15 103,69 101,21 103,50 101,27 103,47 101,86 103,45 101,65 103,48 101,94 103,93 102,62 103,89 102,71 104,40 103,39 104,79 104,51 104,77 104,09 105,13 104,29 105,26 104,57 104,96 105,39 104,75 105,15 105,01 106,13 105,15 105,46 105,20 106,47 105,77 106,62 105,78 106,52 106,26 108,04 106,13 107,15 106,12 107,32 106,57 107,76 106,44 107,26 106,54 107,89
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
X[t] = + 116.963217020579 -0.242322317806448Y[t] + 1.00872149293644M1[t] + 1.14669854609754M2[t] + 1.45965244398060M3[t] + 1.93063256790926M4[t] + 2.08395036348201M5[t] + 1.65449785574894M6[t] + 1.48036439887373M7[t] + 1.12146370946024M8[t] + 1.30579398428416M9[t] + 0.525442112192919M10[t] + 0.717140915762134M11[t] + 0.212478733778654t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)116.96321702057922.4045795.22053e-061e-06
Y-0.2423223178064480.236762-1.02350.3105590.155279
M11.008721492936440.4784322.10840.0395670.019783
M21.146698546097540.4917842.33170.0234060.011703
M31.459652443980600.4943122.95290.0046230.002311
M41.930632567909260.499953.86170.0002990.000149
M52.083950363482010.4957064.2049.7e-054.9e-05
M61.654497855748940.487643.39290.0012880.000644
M71.480364398873730.5009812.95490.0045970.002298
M81.121463709460240.4943142.26870.027230.013615
M91.305793984284160.4893992.66820.0100020.005001
M100.5254421121929190.5028911.04480.3006660.150333
M110.7171409157621340.4987181.4380.1561080.078054
t0.2124787337786540.0410745.1733e-062e-06


Multiple Linear Regression - Regression Statistics
Multiple R0.979912611016258
R-squared0.9602287252287
Adjusted R-squared0.95082824210094
F-TEST (value)102.146742053388
F-TEST (DF numerator)13
F-TEST (DF denominator)55
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.784336695927402
Sum Squared Residuals33.8351228918073


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
196.9294.94570696965551.97429303034454
296.0695.25739118574640.802608814253595
396.5995.72224323795650.867756762043497
496.6796.39843242612960.271567573870375
597.2796.727880607810.542119392189937
696.3896.5763338596634-0.196333859663392
796.4796.5395592180468-0.0695592180468275
896.0596.4004069319462-0.350406931946186
996.7696.7317889147410.028211085258984
1096.5196.19057123138710.319428768612863
1196.5596.6141345541595-0.0641345541595285
1295.9796.0973562562857-0.127356256285724
139797.214357886344-0.214357886344048
1497.4697.40245772035350.0575422796465193
1597.997.86004010302940.0399598969706189
1698.4298.6040795401883-0.184079540188308
1798.5499.0353030953475-0.495303095347447
189998.75047907240720.249520927592767
1998.9498.74278310892750.197216891072549
2099.0298.53093412748490.489065872515128
21100.0798.85989288710161.21010711289835
2298.7298.36956289048710.35043710951288
2398.7398.7301224106298-0.000122410629820019
2498.0498.2399995677147-0.199999567714725
2599.0899.390926322266-0.310926322265963
2699.2299.6517228516173-0.431722851617322
2799.57100.143230358786-0.573230358786143
28100.44100.698258388056-0.258258388056033
29100.84100.969549213463-0.129549213462911
30100.75100.764691555399-0.0146915553988233
31100.49100.720647244248-0.230647244248079
3299.98100.545146610476-0.565146610476458
3399.96100.924993056833-0.964993056832593
3499.76100.238381982795-0.478381982794836
35100.11100.671638198279-0.561638198279485
3699.79100.246942381172-0.456942381172125
37100.29101.400292358901-1.11029235890142
38101.12101.585968969733-0.465968969732779
39102.65101.9538920948200.696107905179692
40102.71102.5816168194320.128383180567852
41103.39102.9110650011130.478934998887429
42102.8102.6189713086380.181028691361835
43102.07102.507076748502-0.437076748501611
44102.15102.336422561086-0.186422561086118
45101.21102.704152891552-1.49415289155193
46101.27102.182320993623-0.912320993622567
47101.86102.593768200505-0.733768200504626
48101.65102.093952464877-0.443952464877267
49101.94103.307883022058-1.36788302205818
50102.62103.549293765985-0.929293765985017
51102.71104.084419290359-1.37441929035901
52103.39104.644293765985-1.25429376598502
53104.51104.915584591392-0.405584591391901
54104.09104.703457263794-0.61345726379362
55104.29104.654566506287-0.364566506286737
56104.57104.4766426493370.093357350662928
57105.39104.9461483532820.443851646718420
58105.15104.4291629017080.72083709829166
59106.13104.7703366364271.35966336357346
60105.46104.2317493299501.22825067004984
61106.47105.4408334407751.02916655922507
62106.62105.6531655065650.966834493435003
63106.52106.1761749150490.343825084951341
64108.04106.7433190602091.29668093979114
65107.15107.1406174908750.0093825091248946
66107.32106.9260669400990.393933059901234
67107.76106.8553671739890.904632826010706
68107.26106.7404471196690.519552880330705
69107.89107.1130238964910.77697610350877
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/1jpfu1195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/1jpfu1195581360.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/2uxto1195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/2uxto1195581360.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/3g92c1195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/3g92c1195581360.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/4nkpc1195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/4nkpc1195581360.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/56w9o1195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/56w9o1195581360.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/66im71195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/66im71195581360.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/7jxnv1195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/7jxnv1195581360.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/82aw81195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/82aw81195581360.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/9ew5h1195581360.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/20/t1195580955h7j3ou4hojersml/9ew5h1195581360.ps (open in new window)


 
Parameters:
par1 = 2 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by