Home » date » 2007 » Nov » 18 » attachments

The Seatbelt Law

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 18 Nov 2007 16:06:09 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3.htm/, Retrieved Sun, 18 Nov 2007 23:59:38 +0100
 
User-defined keywords:
Q2
 
Dataseries X:
» Textbox « » Textfile « » CSV «
1687 0 -183.9235445 1508 0 -177.0726091 1507 0 -228.6351091 1385 0 -237.4476091 1632 0 -127.7601091 1511 0 -193.0101091 1559 0 -220.6351091 1630 0 -164.5101091 1579 0 -268.3226091 1653 0 -333.6976091 2152 0 -34.26010911 2148 0 -154.8851091 1752 0 -97.74528053 1765 0 101.1056549 1717 0 2.543154874 1558 0 -43.26934513 1575 0 -163.5818451 1520 0 -162.8318451 1805 0 46.54315487 1800 0 26.66815487 1719 0 -107.1443451 2008 0 42.48065487 2242 0 76.91815487 2478 0 196.2931549 2030 0 201.4329835 1655 0 12.28391886 1693 0 -0.278581137 1623 0 42.90891886 1805 0 87.59641886 1746 0 84.34641886 1795 0 57.72141886 1926 0 173.8464189 1619 0 -185.9660811 1992 0 47.65891886 2233 0 89.09641886 2192 0 -68.52858114 2080 0 272.6112475 1768 0 146.4621829 1835 0 162.8996829 1569 0 10.08718285 1976 0 279.7746829 1853 0 212.5246829 1965 0 248.8996829 1689 0 -41.97531715 1778 0 -5.787817149 1976 0 52.83718285 2397 0 274.2746829 2654 0 414.6496829 2097 0 310.7895114 1963 0 362.6404468 1677 0 26.07794684 1941 0 403.2654468 2003 0 327.9529468 1813 0 193.7029468 2012 0 317.0779468 1912 0 202.2029468 2084 0 321.3904468 2080 0 178.0154468 2118 0 16.45294684 2150 0 -68.17205316 1608 0 -157.0322246 1503 0 -76.18128917 1548 0 -81.74378917 1382 0 -134.5562892 1731 0 77.13121083 1798 0 199.8812108 1779 0 105.2562108 1887 0 198.3812108 2004 0 262.5687108 2077 0 196.1937108 2092 0 11.63121083 2051 0 -145.9937892 1577 0 -166.8539606 1356 0 -202.0030252 1652 0 43.43447482 1382 0 -113.3780252 1519 0 -113.6905252 1421 0 -155.9405252 1442 0 -210.5655252 1543 0 -124.4405252 1656 0 -64.25302518 1561 0 -298.6280252 1905 0 -154.1905252 2199 0 23.18447482 1473 0 -249.6756966 1655 0 118.1752388 1407 0 -180.3872612 1395 0 -79.19976119 1530 0 -81.51226119 1309 0 -246.7622612 1526 0 -105.3872612 1327 0 -319.2622612 1627 0 -72.07476119 1748 0 -90.44976119 1958 0 -80.01226119 2274 0 119.3627388 1648 0 -53.49743261 1401 0 -114.6464972 1411 0 -155.2089972 1403 0 -50.02149721 1394 0 -196.3339972 1520 0 -14.58399721 1528 0 -82.20899721 1643 0 17.91600279 1515 0 -162.8964972 1685 0 -132.2714972 2000 0 -16.83399721 2215 0 81.54100279 1956 0 275.6808314 1462 0 -32.46823322 1563 0 17.96926678 1459 0 27.15676678 1446 0 -123.1557332 1622 0 108.5942668 1657 0 67.96926678 1638 0 34.09426678 1643 0 -13.71823322 1683 0 -113.0932332 2050 0 54.34426678 2262 0 149.7192668 1813 0 153.8590954 1445 0 -28.28996923 1762 0 238.1475308 1461 0 50.33503077 1556 0 8.022530771 1431 0 -61.22746923 1427 0 -140.8524692 1554 0 -28.72746923 1645 0 9.460030771 1653 0 -121.9149692 2016 0 41.52253077 2207 0 115.8975308 1665 0 27.03735936 1361 0 -91.11170524 1506 0 3.325794759 1360 0 -29.48670524 1453 0 -73.79920524 1522 0 50.95079476 1460 0 -86.67420524 1552 0 -9.54920524 1548 0 -66.36170524 1827 0 73.26329476 1737 0 -216.2992052 1941 0 -128.9242052 1474 0 -142.7843767 1458 0 27.06655875 1542 0 60.50405875 1404 0 35.69155875 1522 0 16.37905875 1385 0 -64.87094125 1641 0 115.5040587 1510 0 -30.37094125 1681 0 87.81655875 1938 0 205.4415587 1868 0 -64.12094125 1726 0 -322.7459413 1456 0 -139.6061127 1445 0 35.24482274 1456 0 -4.317677263 1365 0 17.86982274 1487 0 2.557322737 1558 0 129.3073227 1488 0 -16.31767726 1684 0 164.8073227 1594 0 21.99482274 1850 0 138.6198227 1998 0 87.05732274 2079 0 51.43232274 1494 0 -80.42784867 1057 1 -105.1918797 1218 1 5.245620328 1168 1 68.43312033 1236 1 -0.879379672 1076 1 -105.1293797 1174 1 -82.75437967 1139 1 -132.6293797 1427 1 102.5581203 1487 1 23.18312033 1483 1 -180.3793797 1513 1 -267.0043797 1357 1 30.13544892 1165 1 23.98638432 1282 1 90.42388432 1110 1 31.61138432 1297 1 81.29888432 1185 1 25.04888432 1222 1 -13.57611568 1284 1 33.54888432 1444 1 140.7363843 1575 1 132.3613843 1737 1 94.79888432 1763 1 4.173884316
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
x[t] = + 2165.22639318386 -395.811145503876y[t] + 1.00000000001762z[t] -442.550696587991M1[t] -617.8124999965M2[t] -567.250000002188M3[t] -680.4374999915M4[t] -543.125M5[t] -598.87499999275M6[t] -523.249999992751M7[t] -508.374999989M8[t] -455.56249999475M9[t] -316.187499988375M10[t] -116.624999999000M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)2165.2263931838621.083338102.698500
y-395.81114550387618.65458-21.217900
z1.000000000017620.04121724.261600
M1-442.55069658799129.656345-14.922600
M2-617.812499996529.633418-20.848500
M3-567.25000000218829.633418-19.142200
M4-680.437499991529.633418-22.961800
M5-543.12529.633418-18.328100
M6-598.8749999927529.633418-20.209400
M7-523.24999999275129.633418-17.657400
M8-508.37499998929.633418-17.155500
M9-455.5624999947529.633418-15.373300
M10-316.18749998837529.633418-10.6700
M11-116.62499999900029.633418-3.93560.0001195.9e-05


Multiple Linear Regression - Regression Statistics
Multiple R0.960178790197478
R-squared0.921943309145093
Adjusted R-squared0.916242539588274
F-TEST (value)161.722606036986
F-TEST (DF numerator)13
F-TEST (DF denominator)178
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation83.8159633601225
Sum Squared Residuals1250470.59708940


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
116871538.75215209260148.247847907395
215081370.34128408424137.658715915758
315071369.34128407764137.658715922356
413851247.34128408817137.658715911826
516321494.34128408161137.658715918392
615111373.34128408771137.658715912292
715591421.34128408722137.658715912777
816301492.34128409196137.65871590804
915791441.34128408438137.65871591562
1016531515.34128408960137.658715910397
1121522014.34128407426137.658715925745
1221482010.34128408113137.65871591887
1317521624.93041606415127.069583935854
1417651648.51954808914116.480451910859
1517171600.51954805572116.480451944283
1615581441.51954806160116.480451938403
1715751458.51954808098116.480451919023
1815201403.51954808824116.480451911760
1918051688.51954806193116.480451938070
2018001683.51954806533116.480451934670
2117191602.51954808722116.480451912778
2220081891.51954806623116.480451933767
2322422125.51954805621116.480451943785
2424782361.51954808732116.480451912681
2520301924.10868009942105.891319900582
2616551559.6978120475895.3021879524242
2716931597.6978120446795.302187955333
2816231527.6978120531295.3021879468843
2918051709.6978120454095.3021879545969
3017461650.6978120526095.302187947404
3117951699.6978120521395.3021879478735
3219261830.6978120979295.302187902077
3316191523.6978120858395.3021879141673
3419921896.6978120563295.3021879436756
3522332137.6978120464395.3021879535703
3621922096.6978120426595.302187957348
3720801995.2869441006784.7130558993275
3817681693.8760760899474.1239239100598
3918351760.8760760845474.1239239154574
4015691494.8760760425474.1239239574626
4119761901.8760760887974.1239239112103
4218531778.8760760948574.1239239051454
4319651890.8760760955074.1239239045046
4416891614.8760760441274.1239239558802
4517781703.8760760400174.1239239599924
4619761901.8760760464274.1239239535843
4723972322.8760760896974.1239239103072
4826542579.8760760911774.1239239088338
4920972033.4652080013563.5347919986547
5019631910.0543399937552.9456600062504
5116771624.0543400221352.9456599778686
5219411888.0543399994752.9456600005342
5320031950.0543399896452.9456600103614
5418131760.0543399945252.945660005477
5520121959.0543399967052.9456600033032
5619121859.0543399984252.9456600015772
5720842031.0543399947752.945660005227
5820802027.0543399986252.9456600013785
5921182065.0543400251552.9456599748505
6021502097.0543400226652.9456599773418
6116081565.643471993142.3565280068985
6215031471.2326040160231.7673959839831
6315481516.2326040102331.7673959897685
6413821350.2326039899931.7673960100116
6517311699.2326040152231.7673959847813
6617981766.2326039946331.7673960053684
6717791747.2326039929631.7673960070358
6818871855.2326039983631.7673960016445
6920041972.2326039937431.7673960062635
7020772045.2326039989431.7673960010581
7120922060.2326040150631.7673959849355
7220512019.2326039812931.7673960187132
7315771555.8217359929321.1782640070715
7413561345.410867983810.5891320162003
7516521641.4108680024410.5891319975626
7613821371.4108679903610.5891320096383
7715191508.4108679818610.5891320181439
7814211410.4108679883610.5891320116383
7914421431.410867987410.5891320126011
8015431532.4108679926710.5891320073333
8116561645.4108680079810.5891319920226
8215611550.4108679902210.5891320097778
8319051894.4108679821410.5891320178575
8421992188.4108680042710.5891319957320
8514731472.999999991478.5309714847881e-09
8616551665.58913198944-10.5891319894418
8714071417.58913197849-10.5891319784932
8813951405.58913200096-10.5891320009639
8915301540.58913199242-10.5891319924232
9013091319.58913198676-10.5891319867612
9115261536.58913198925-10.5891319892523
9213271337.58913198923-10.5891319892336
9316271637.58913199784-10.5891319978396
9417481758.58913200389-10.5891320038908
9519581968.58913199345-10.5891319934496
9622742284.58913198596-10.5891319859629
9716481669.17826398493-21.178263984926
9814011432.76739598534-31.767395985339
9914111442.76739597894-31.767395978937
10014031434.76739598148-31.7673959814781
10113941425.7673959804-31.7673959803999
10215201551.76739598085-31.7673959808525
10315281559.76739597966-31.7673959796607
10416431674.76739598518-31.7673959851752
10515151546.76739598624-31.7673959862392
10616851716.76739599315-31.7673959931538
10720002031.76739597456-31.7673959745629
10822152246.76739597530-31.7673959752963
10919561998.35652800073-42.3565280007267
11014621514.94565996679-52.9456599667872
11115631615.94565996199-52.9456599619887
11214591511.94565997284-52.9456599728381
11314461498.94565998169-52.9456599816894
11416221674.94565999302-52.9456599930232
11516571709.94565997231-52.9456599723072
11616381690.94565997546-52.9456599754603
11716431695.94565996887-52.9456599688679
11816831735.94565999349-52.9456599934918
11920502102.94565996582-52.9456599658171
12022622314.9456599865-52.9456599864978
12118131876.53479199858-63.53479199858
12214451519.12392395686-74.1239239568608
12317621836.12392398587-74.1239239858686
12414611535.12392396325-74.1239239632467
12515561630.123923955-74.1239239550008
12614311505.12392396003-74.1239239600306
12714271501.12392398863-74.1239239886275
12815541628.12392396435-74.1239239643534
12916451719.12392396028-74.1239239602762
13016531727.12392399334-74.1239239933363
13120162090.12392395559-74.1239239555913
13222072281.1239239859-74.1239239859018
13316651749.71305595635-84.7130559563452
13413611456.30218794575-95.3021879457539
13515061601.30218794073-95.3021879407305
13613601455.30218795184-95.30218795184
13714531548.30218794256-95.302187942559
13815221617.30218795201-95.3021879520074
13914601555.30218794958-95.3021879495821
14015521647.30218795469-95.3021879546914
14115481643.30218794794-95.3021879479402
14218271922.30218795678-95.3021879567757
14317371832.30218798105-95.302187981048
14419412036.30218798159-95.3021879815876
14514741579.89131989335-105.891319893353
14614581574.48045193784-116.480451937836
14715421658.48045193274-116.480451932738
14814041520.48045194299-116.480451942989
14915221638.48045193415-116.480451934148
15013851501.48045193997-116.480451939966
15116411757.48045189314-116.480451893145
15215101626.48045194432-116.480451944324
15316811797.48045194066-116.480451940657
15419382054.48045189910-116.480451899105
15518681984.48045193373-116.480451933730
15617261842.48045187817-116.480451878172
15714561583.06958389341-127.069583893409
15814451582.65871592798-137.658715927980
15914561593.65871591860-137.658715918596
16013651502.65871593267-137.658715932674
16114871624.65871592090-137.658715920905
16215581695.65871589339-137.658715893388
16314881625.65871593082-137.658715930822
16416841821.65871589776-137.658715897764
16515941731.65871592950-137.658715929497
16618501987.65871589793-137.658715897927
16719982135.65871592639-137.658715926394
16820792216.65871592477-137.658715924766
16914941642.24784792445-148.247847924451
17010571046.4108679816310.5891320183705
17112181207.4108680058910.5891319941119
17211681157.4108680196910.5891319803108
17312361225.4108680079710.5891319920322
17410761065.4108679853810.5891320146191
17511741163.4108680157810.5891319842250
17611391128.4108679886510.5891320113538
17714271416.4108679870410.5891320129593
17814871476.4108680220210.5891319779832
17914831472.4108679778010.5891320221953
18015131502.4108679752810.5891320247218
18113571357.00000001252-1.25235146697378e-08
18211651175.58913200391-10.5891320039058
18312821292.58913199939-10.5891319993891
18411101120.58913200904-10.5891320090404
18512971307.58913200142-10.5891320014160
18611851195.58913200767-10.5891320076747
18712221232.58913200699-10.5891320069938
18812841294.58913201157-10.5891320115745
18914441454.58913198771-10.5891319877134
19015751585.58913199394-10.5891319939408
19117371747.58913200265-10.5891320026538
19217631773.58913199606-10.5891319960567
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/116xd1195427163.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/116xd1195427163.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/2t0yx1195427163.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/2t0yx1195427163.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/3l4521195427163.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/3l4521195427163.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/4ukvr1195427163.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/4ukvr1195427163.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/5odyc1195427163.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/5odyc1195427163.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/6cgbw1195427163.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/6cgbw1195427163.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/713ba1195427163.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/713ba1195427163.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/8cwbw1195427164.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/8cwbw1195427164.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/95qsi1195427164.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195426768hgb27xlfzqbdda3/95qsi1195427164.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by