Home » date » 2007 » Nov » 18 » attachments

R Software Module: rwasp_centraltendency.wasp (opens new window with default values)
Title produced by software: Central Tendency
Date of computation: Sun, 18 Nov 2007 15:18:50 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/18/t1195423979zfnmwpikowwsm9c.htm/, Retrieved Sun, 18 Nov 2007 23:12:59 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
99,5 101,6 103,9 106,6 108,3 102 93,8 91,6 97,7 94,8 98 103,8 97,8 91,2 89,3 87,5 90,4 94,2 102,2 101,3 96 90,8 93,2 90,9 91,1 90,2 94,3 96 99 103,3 113,1 112,8 112,1 107,4 111 110,5 110,8 112,4 111,5 116,2 122,5 121,3 113,9 110,7 120,8 141,1 147,4 148 158,1 165 187 190,3 182,4 168,8 151,2 120,1 112,5 106,2 107,1 108,5 106,5 108,3 125,6 124 127,2 136,9 135,8 124,3 115,4 113,6 114,4 118,4 117 116,5 115,4 113,6 117,4 116,9 116,4 111,1 110,2 118,9 131,8 130,6 138,3 148,4 148,7 144,3 152,5 162,9 167,2 166,5 185,6
 
Text written by user:
 
Output produced by software:


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean119.1569892473122.5687450516483946.3872384574902
Geometric Mean116.883038574663
Harmonic Mean114.858077403893
Quadratic Mean121.677629790352
Winsorized Mean ( 1 / 31 )119.1408602150542.5557583950217346.6166365518447
Winsorized Mean ( 2 / 31 )119.1301075268822.54471547916646.8147062028031
Winsorized Mean ( 3 / 31 )119.0333333333332.5151264370273847.326977912895
Winsorized Mean ( 4 / 31 )118.4655913978492.3648274404990350.0948142638477
Winsorized Mean ( 5 / 31 )118.3849462365592.3444571946870550.4956740113832
Winsorized Mean ( 6 / 31 )118.3526881720432.3326391096746550.7376763431487
Winsorized Mean ( 7 / 31 )118.2473118279572.3065776786513751.2652632176232
Winsorized Mean ( 8 / 31 )118.1010752688172.262854039168252.1912033319789
Winsorized Mean ( 9 / 31 )117.7913978494622.1458804352173654.891873711282
Winsorized Mean ( 10 / 31 )117.2537634408602.0190580749227358.0734971901924
Winsorized Mean ( 11 / 31 )117.1473118279571.9841651023384359.0411108883498
Winsorized Mean ( 12 / 31 )116.8376344086021.9233858365272360.7458119893189
Winsorized Mean ( 13 / 31 )116.8655913978491.9069951290486361.2825851611651
Winsorized Mean ( 14 / 31 )116.9860215053761.8738085454938162.4322168808057
Winsorized Mean ( 15 / 31 )116.8892473118281.8564592659137962.963540034525
Winsorized Mean ( 16 / 31 )116.6483870967741.7270268718358467.5428906168533
Winsorized Mean ( 17 / 31 )116.0817204301081.6249133801034171.4387128886342
Winsorized Mean ( 18 / 31 )115.5784946236561.531025446816475.4909037364393
Winsorized Mean ( 19 / 31 )115.4967741935481.4598590775976979.1150159394887
Winsorized Mean ( 20 / 31 )115.3677419354841.4091807782712981.868659943695
Winsorized Mean ( 21 / 31 )114.8709677419351.2202175066546294.1397473118283
Winsorized Mean ( 22 / 31 )114.6580645161291.1691724801787498.067707254451
Winsorized Mean ( 23 / 31 )113.9161290322581.03585362431273109.973191538369
Winsorized Mean ( 24 / 31 )113.5548387096770.97275834793677116.734889965764
Winsorized Mean ( 25 / 31 )113.5010752688170.888933172246951127.682348698858
Winsorized Mean ( 26 / 31 )113.5569892473120.860530563924384131.961599050525
Winsorized Mean ( 27 / 31 )113.1505376344090.800516464391189141.346921228487
Winsorized Mean ( 28 / 31 )113.4817204301080.670053248874067169.362241912562
Winsorized Mean ( 29 / 31 )113.4193548387100.639353888124727177.396832873539
Winsorized Mean ( 30 / 31 )113.2258064516130.607483914957996186.384863308589
Winsorized Mean ( 31 / 31 )112.9924731182800.539245738704913209.537999112704
Trimmed Mean ( 1 / 31 )118.7230769230772.4800971252610147.870333671139
Trimmed Mean ( 2 / 31 )118.2865168539332.392513215585249.44027731316
Trimmed Mean ( 3 / 31 )117.8356321839082.2974963867618851.2887127322046
Trimmed Mean ( 4 / 31 )117.3988235294122.1999544775769353.3642058169845
Trimmed Mean ( 5 / 31 )117.12.1410441233869454.6929410379261
Trimmed Mean ( 6 / 31 )116.8049382716052.0785381119485756.1957164028633
Trimmed Mean ( 7 / 31 )116.5012658227852.008503905376558.0040026364531
Trimmed Mean ( 8 / 31 )116.21.932683775357460.1236485148802
Trimmed Mean ( 9 / 31 )115.9053333333331.8534709521788062.5342054576491
Trimmed Mean ( 10 / 31 )115.6383561643841.7859746902262064.7480374706417
Trimmed Mean ( 11 / 31 )115.4267605633801.7329926172533666.6054542957728
Trimmed Mean ( 12 / 31 )115.2159420289861.6768350805665468.7103599896407
Trimmed Mean ( 13 / 31 )115.2159420289861.6218652482953171.0391582470156
Trimmed Mean ( 14 / 31 )114.8261538461541.5586549257339873.6700291708773
Trimmed Mean ( 15 / 31 )114.5984126984131.4879727616435777.0164721105718
Trimmed Mean ( 16 / 31 )114.3655737704921.4048100142749281.409993243478
Trimmed Mean ( 17 / 31 )114.1406779661021.3292314822468285.869676945334
Trimmed Mean ( 18 / 31 )113.9543859649121.2578551935004490.5942007901503
Trimmed Mean ( 19 / 31 )113.8018181818181.1894386274819295.6769147667085
Trimmed Mean ( 20 / 31 )113.6452830188681.11850955034237101.604213378493
Trimmed Mean ( 21 / 31 )113.4882352941181.03956117083717109.169367304018
Trimmed Mean ( 22 / 31 )113.3632653061220.982654385740943115.364330481916
Trimmed Mean ( 23 / 31 )113.2468085106380.921276168460804122.923844540386
Trimmed Mean ( 24 / 31 )113.1866666666670.874340155243202129.453812669948
Trimmed Mean ( 25 / 31 )113.1534883720930.828214726232708136.623371678977
Trimmed Mean ( 26 / 31 )113.1534883720930.787644777207634143.660558219209
Trimmed Mean ( 27 / 31 )113.0820512820510.740270875350136152.757666210447
Trimmed Mean ( 28 / 31 )113.0756756756760.692694670824072163.240285277717
Trimmed Mean ( 29 / 31 )113.0371428571430.663680667800053170.318570875109
Trimmed Mean ( 30 / 31 )1130.631496539014965178.940014740638
Trimmed Mean ( 31 / 31 )112.9774193548390.595443445079874189.736607713741
Median112.8
Midrange138.9
Midmean - Weighted Average at Xnp112.943478260870
Midmean - Weighted Average at X(n+1)p113.246808510638
Midmean - Empirical Distribution Function113.246808510638
Midmean - Empirical Distribution Function - Averaging113.246808510638
Midmean - Empirical Distribution Function - Interpolation113.246808510638
Midmean - Closest Observation113.004166666667
Midmean - True Basic - Statistics Graphics Toolkit113.246808510638
Midmean - MS Excel (old versions)113.246808510638
Number of observations93
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195423979zfnmwpikowwsm9c/1e4i81195424324.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195423979zfnmwpikowwsm9c/1e4i81195424324.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195423979zfnmwpikowwsm9c/2w7jj1195424324.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195423979zfnmwpikowwsm9c/2w7jj1195424324.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('http://www.xycoon.com/arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('http://www.xycoon.com/midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('http://www.xycoon.com/method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by