Home » date » 2007 » Nov » 18 » attachments

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 18 Nov 2007 12:40:47 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox.htm/, Retrieved Sun, 18 Nov 2007 20:34:23 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
1687 0 1508 0 1507 0 1385 0 1632 0 1511 0 1559 0 1630 0 1579 0 1653 0 2152 0 2148 0 1752 0 1765 0 1717 0 1558 0 1575 0 1520 0 1805 0 1800 0 1719 0 2008 0 2242 0 2478 0 2030 0 1655 0 1693 0 1623 0 1805 0 1746 0 1795 0 1926 0 1619 0 1992 0 2233 0 2192 0 2080 0 1768 0 1835 0 1569 0 1976 0 1853 0 1965 0 1689 0 1778 0 1976 0 2397 0 2654 0 2097 0 1963 0 1677 0 1941 0 2003 0 1813 0 2012 0 1912 0 2084 0 2080 0 2118 0 2150 0 1608 0 1503 0 1548 0 1382 0 1731 0 1798 0 1779 0 1887 0 2004 0 2077 0 2092 0 2051 0 1577 0 1356 0 1652 0 1382 0 1519 0 1421 0 1442 0 1543 0 1656 0 1561 0 1905 0 2199 0 1473 0 1655 0 1407 0 1395 0 1530 0 1309 0 1526 0 1327 0 1627 0 1748 0 1958 0 2274 0 1648 0 1401 0 1411 0 1403 0 1394 0 1520 0 1528 0 1643 0 1515 0 1685 0 2000 0 2215 0 1956 0 1462 0 1563 0 1459 0 1446 0 1622 0 1657 0 1638 0 1643 0 1683 0 2050 0 2262 0 1813 0 1445 0 1762 0 1461 0 1556 0 1431 0 1427 0 1554 0 1645 0 1653 0 2016 0 2207 0 1665 0 1361 0 1506 0 1360 0 1453 0 1522 0 1460 0 1552 0 1548 0 1827 0 1737 0 1941 0 1474 0 1458 0 1542 0 1404 0 1522 0 1385 0 1641 0 1510 0 1681 0 1938 0 1868 0 1726 0 1456 0 1445 0 1456 0 1365 0 1487 0 1558 0 1488 0 1684 0 1594 0 1850 0 1998 0 2079 0 1494 0 1057 1 1218 1 1168 1 1236 1 1076 1 1174 1 1139 1 1427 1 1487 1 1483 1 1513 1 1357 1 1165 1 1282 1 1110 1 1297 1 1185 1 1222 1 1284 1 1444 1 1575 1 1737 1 1763 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Doden[t] = + 1846.02995173261 -251.176611180784Inv.wet[t] -1.50915849932545t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)1846.0299517326138.7814347.600900
Inv.wet-251.17661118078467.520939-3.720.0002630.000131
t-1.509158499325450.395585-3.8150.0001849.2e-05


Multiple Linear Regression - Regression Statistics
Multiple R0.505523756005193
R-squared0.255554267885598
Adjusted R-squared0.247676535270630
F-TEST (value)32.4400789384575
F-TEST (DF numerator)2
F-TEST (DF denominator)189
p-value7.73159314348959e-13
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation251.198646170456
Sum Squared Residuals11926043.6093574


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
116871844.52079323326-157.520793233258
215081843.01163473395-335.011634733954
315071841.50247623463-334.502476234629
413851839.99331773530-454.993317735303
516321838.48415923598-206.484159235977
615111836.97500073665-325.975000736652
715591835.46584223733-276.465842237326
816301833.956683738-203.956683738001
915791832.44752523868-253.447525238675
1016531830.93836673935-177.93836673935
1121521829.42920824002322.570791759975
1221481827.9200497407320.079950259301
1317521826.41089124137-74.4108912413737
1417651824.90173274205-59.9017327420482
1517171823.39257424272-106.392574242723
1615581821.88341574340-263.883415743397
1715751820.37425724407-245.374257244072
1815201818.86509874475-298.865098744746
1918051817.35594024542-12.3559402454209
2018001815.84678174610-15.8467817460955
2117191814.33762324677-95.33762324677
2220081812.82846474744195.171535252555
2322421811.31930624812430.680693751881
2424781809.81014774879668.189852251206
2520301808.30098924947221.699010750532
2616551806.79183075014-151.791830750143
2716931805.28267225082-112.282672250817
2816231803.77351375149-180.773513751492
2918051802.264355252172.7356447478336
3017461800.75519675284-54.755196752841
3117951799.24603825352-4.24603825351549
3219261797.73687975419128.26312024581
3316191796.22772125486-177.227721254865
3419921794.71856275554197.281437244461
3522331793.20940425621439.790595743786
3621921791.70024575689400.299754243112
3720801790.19108725756289.808912742437
3817681788.68192875824-20.6819287582373
3918351787.1727702589147.8272297410881
4015691785.66361175959-216.663611759586
4119761784.15445326026191.845546739739
4218531782.6452947609470.3547052390645
4319651781.13613626161183.86386373839
4416891779.62697776228-90.6269777622846
4517781778.11781926296-0.117819262959129
4619761776.60866076363199.391339236366
4723971775.09950226431621.900497735692
4826541773.59034376498880.409656235017
4920971772.08118526566324.918814734343
5019631770.57202676633192.427973233668
5116771769.06286826701-92.0628682670064
5219411767.55370976768173.446290232319
5320031766.04455126836236.955448731644
5418131764.5353927690348.46460723097
5520121763.02623426970248.973765730295
5619121761.51707577038150.482924229621
5720841760.00791727105323.992082728946
5820801758.49875877173321.501241228272
5921181756.98960027240361.010399727597
6021501755.48044177308394.519558226923
6116081753.97128327375-145.971283273752
6215031752.46212477443-249.462124774426
6315481750.9529662751-202.952966275101
6413821749.44380777578-367.443807775775
6517311747.93464927645-16.9346492764500
6617981746.4254907771251.5745092228754
6717791744.916332277834.0836677222009
6818871743.40717377847143.592826221526
6920041741.89801527915262.101984720852
7020771740.38885677982336.611143220177
7120921738.87969828050353.120301719503
7220511737.37053978117313.629460218828
7315771735.86138128185-158.861381281846
7413561734.35222278252-378.352222782521
7516521732.84306428320-80.8430642831955
7613821731.33390578387-349.33390578387
7715191729.82474728454-210.824747284545
7814211728.31558878522-307.315588785219
7914421726.80643028589-284.806430285894
8015431725.29727178657-182.297271786568
8116561723.78811328724-67.7881132872428
8215611722.27895478792-161.278954787917
8319051720.76979628859184.230203711408
8421991719.26063778927479.739362210734
8514731717.75147928994-244.751479289941
8616551716.24232079062-61.2423207906155
8714071714.73316229129-307.73316229129
8813951713.22400379196-318.224003791965
8915301711.71484529264-181.714845292639
9013091710.20568679331-401.205686793314
9115261708.69652829399-182.696528293988
9213271707.18736979466-380.187369794663
9316271705.67821129534-78.6782112953373
9417481704.1690527960143.8309472039881
9519581702.65989429669255.340105703314
9622741701.15073579736572.849264202639
9716481699.64157729804-51.6415772980355
9814011698.13241879871-297.13241879871
9914111696.62326029938-285.623260299385
10014031695.11410180006-292.114101800059
10113941693.60494330073-299.604943300734
10215201692.09578480141-172.095784801408
10315281690.58662630208-162.586626302083
10416431689.07746780276-46.0774678027573
10515151687.56830930343-172.568309303432
10616851686.05915080411-1.05915080410641
10720001684.54999230478315.450007695219
10822151683.04083380546531.959166194544
10919561681.53167530613274.46832469387
11014621680.02251680680-218.022516806805
11115631678.51335830748-115.513358307479
11214591677.00419980815-218.004199808154
11314461675.49504130883-229.495041308828
11416221673.98588280950-51.9858828095028
11516571672.47672431018-15.4767243101773
11616381670.96756581085-32.9675658108519
11716431669.45840731153-26.4584073115264
11816831667.949248812215.0507511877990
11920501666.44009031288383.559909687125
12022621664.93093181355597.06906818645
12118131663.42177331422149.578226685775
12214451661.9126148149-216.912614814899
12317621660.40345631557101.596543684426
12414611658.89429781625-197.894297816248
12515561657.38513931692-101.385139316923
12614311655.87598081760-224.875980817597
12714271654.36682231827-227.366822318272
12815541652.85766381895-98.8576638189464
12916451651.34850531962-6.34850531962096
13016531649.839346820303.16065317970451
13120161648.33018832097367.66981167903
13222071646.82102982164560.178970178355
13316651645.3118713223219.6881286776809
13413611643.80271282299-282.802712822994
13515061642.29355432367-136.293554323668
13613601640.78439582434-280.784395824343
13714531639.27523732502-186.275237325017
13815221637.76607882569-115.766078825692
13914601636.25692032637-176.256920326366
14015521634.74776182704-82.747761827041
14115481633.23860332772-85.2386033277155
14218271631.72944482839195.27055517161
14317371630.22028632906106.779713670935
14419411628.71112782974312.288872170261
14514741627.20196933041-153.201969330414
14614581625.69281083109-167.692810831088
14715421624.18365233176-82.1836523317628
14814041622.67449383244-218.674493832437
14915221621.16533533311-99.1653353331119
15013851619.65617683379-234.656176833786
15116411618.1470183344622.8529816655390
15215101616.63785983514-106.637859835136
15316811615.1287013358165.8712986641899
15419381613.61954283648324.380457163515
15518681612.11038433716255.889615662841
15617261610.60122583783115.398774162166
15714561609.09206733851-153.092067338508
15814451607.58290883918-162.582908839183
15914561606.07375033986-150.073750339857
16013651604.56459184053-239.564591840532
16114871603.05543334121-116.055433341206
16215581601.54627484188-43.546274841881
16314881600.03711634256-112.037116342556
16416841598.5279578432385.47204215677
16515941597.01879934390-3.01879934390459
16618501595.50964084458254.490359155421
16719981594.00048234525403.999517654746
16820791592.49132384593486.508676154072
16914941590.98216534660-96.9821653466028
17010571338.29639566649-281.296395666493
17112181336.78723716717-118.787237167168
17211681335.27807866784-167.278078667842
17312361333.76892016852-97.7689201685167
17410761332.25976166919-256.259761669191
17511741330.75060316987-156.750603169866
17611391329.24144467054-190.241444670540
17714271327.7322861712199.2677138287851
17814871326.22312767189160.776872328111
17914831324.71396917256158.286030827436
18015131323.20481067324189.795189326761
18113571321.6956521739135.3043478260870
18211651320.18649367459-155.186493674588
18312821318.67733517526-36.6773351752621
18411101317.16817667594-207.168176675937
18512971315.65901817661-18.6590181766112
18611851314.14985967729-129.149859677286
18712221312.64070117796-90.6407011779603
18812841311.13154267863-27.1315426786349
18914441309.62238417931134.377615820691
19015751308.11322567998266.886774320016
19117371306.60406718066430.395932819342
19217631305.09490868133457.905091318667
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/18ffo1195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/18ffo1195414842.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/2r2cm1195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/2r2cm1195414842.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/3n3f41195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/3n3f41195414842.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/4g6bh1195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/4g6bh1195414842.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/5vkbc1195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/5vkbc1195414842.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/6felg1195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/6felg1195414842.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/7cfed1195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/7cfed1195414842.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/8pole1195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/8pole1195414842.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/9xwrt1195414842.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t11954144533bv9lfcry22ydox/9xwrt1195414842.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by