Home » date » 2007 » Nov » 18 » attachments

Q3 - metaalverwerking - linear trend

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 18 Nov 2007 08:55:58 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl.htm/, Retrieved Sun, 18 Nov 2007 16:50:46 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
106.8 0 113.7 0 102.5 0 96.6 0 92.1 0 95.6 0 102.3 0 98.6 0 98.2 0 104.5 0 84 0 73.8 0 103.9 0 106 0 97.2 0 102.6 0 89 0 93.8 0 116.7 0 106.8 0 98.5 0 118.7 0 90 0 91.9 1 113.3 1 113.1 1 104.1 1 108.7 1 96.7 1 101 1 116.9 1 105.8 1 99 1 129.4 1 83 1 88.9 1 115.9 1 104.2 1 113.4 1 112.2 1 100.8 1 107.3 1 126.6 1 102.9 1 117.9 1 128.8 1 87.5 1 93.8 1 122.7 1 126.2 1 124.6 1 116.7 1 115.2 1 111.1 1 129.9 1 113.3 1 118.5 1 133.5 1 102.1 1 102.4 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
y[t] = + 75.261054945055 -1.58593406593407x[t] + 26.9829413919414M1[t] + 26.6538388278388M2[t] + 21.9247362637363M3[t] + 20.4756336996337M4[t] + 11.4265311355311M5[t] + 13.9774285714286M6[t] + 30.248326007326M7[t] + 16.7992234432234M8[t] + 17.2901208791209M9[t] + 33.4010183150183M10[t] -0.708084249084255M11[t] + 0.449102564102564t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)75.2610549450552.70385127.834800
x-1.585934065934072.640786-0.60060.5510850.275542
M126.98294139194143.2853698.213100
M226.65383882783883.2776218.132100
M321.92473626373633.2715826.701600
M420.47563369963373.2672626.266900
M511.42653113553113.2646673.50010.0010450.000523
M613.97742857142863.2638024.28269.3e-054.7e-05
M730.2483260073263.2646679.265400
M816.79922344322343.2672625.14175e-063e-06
M917.29012087912093.2715825.28493e-062e-06
M1033.40101831501833.27762110.190600
M11-0.7080842490842553.285369-0.21550.830310.415155
t0.4491025641025640.0751675.974800


Multiple Linear Regression - Regression Statistics
Multiple R0.936067032778345
R-squared0.876221489854456
Adjusted R-squared0.841240606552454
F-TEST (value)25.0485810289507
F-TEST (DF numerator)13
F-TEST (DF denominator)46
p-value2.22044604925031e-16
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation5.14219103293595
Sum Squared Residuals1216.33791648352


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1106.8102.6930989010994.10690109890118
2113.7102.81309890109910.8869010989011
3102.598.5330989010993.96690109890108
496.697.533098901099-0.93309890109893
592.188.9330989010993.16690109890104
695.691.93309890109893.66690109890109
7102.3108.653098901099-6.35309890109889
898.695.6530989010992.94690109890108
998.296.59309890109891.60690109890112
10104.5113.153098901099-8.6530989010989
118479.49309890109894.50690109890112
1273.880.6502857142857-6.8502857142857
13103.9108.082329670330-4.18232967032969
14106108.202329670330-2.20232967032967
1597.2103.922329670330-6.72232967032967
16102.6102.922329670330-0.32232967032967
178994.3223296703297-5.32232967032966
1893.897.3223296703297-3.52232967032967
19116.7114.0423296703302.65767032967033
20106.8101.0423296703305.75767032967034
2198.5101.982329670330-3.48232967032968
22118.7118.5423296703300.15767032967033
239084.88232967032975.11767032967033
2491.984.45358241758247.44641758241758
25113.3111.8856263736261.41437362637360
26113.1112.0056263736261.09437362637363
27104.1107.725626373626-3.62562637362637
28108.7106.7256263736261.97437362637364
2996.798.1256263736263-1.42562637362635
30101101.125626373626-0.125626373626363
31116.9117.845626373626-0.945626373626368
32105.8104.8456263736260.954373626373634
3399105.785626373626-6.78562637362638
34129.4122.3456263736267.05437362637362
358388.6856263736264-5.68562637362638
3688.989.8428131868132-0.942813186813188
37115.9117.274857142857-1.37485714285716
38104.2117.394857142857-13.1948571428571
39113.4113.1148571428570.285142857142869
40112.2112.1148571428570.085142857142868
41100.8103.514857142857-2.71485714285713
42107.3106.5148571428570.785142857142858
43126.6123.2348571428573.36514285714284
44102.9110.234857142857-7.33485714285713
45117.9111.1748571428576.72514285714285
46128.8127.7348571428571.06514285714286
4787.594.0748571428572-6.57485714285715
4893.895.232043956044-1.43204395604396
49122.7122.6640879120880.0359120879120657
50126.2122.7840879120883.41591208791209
51124.6118.5040879120886.09591208791208
52116.7117.504087912088-0.804087912087903
53115.2108.9040879120886.2959120879121
54111.1111.904087912088-0.804087912087916
55129.9128.6240879120881.27591208791208
56113.3115.624087912088-2.32408791208791
57118.5116.5640879120881.93591208791208
58133.5133.1240879120880.375912087912074
59102.199.4640879120882.63591208791208
60102.4100.6212747252751.77872527472527
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/1l2x11195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/1l2x11195401353.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/2z3oa1195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/2z3oa1195401353.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/322rk1195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/322rk1195401353.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/4h2ef1195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/4h2ef1195401353.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/5c1kn1195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/5c1kn1195401353.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/6lcmk1195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/6lcmk1195401353.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/7qhdh1195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/7qhdh1195401353.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/8t0q51195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/8t0q51195401353.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/928ek1195401353.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195401036hrvxmw2t6wubonl/928ek1195401353.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by