Home » date » 2007 » Nov » 18 » attachments

Q3 - metaalverwerking - monthly dummies

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 18 Nov 2007 08:36:57 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv.htm/, Retrieved Sun, 18 Nov 2007 16:32:41 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
106.8 0 113.7 0 102.5 0 96.6 0 92.1 0 95.6 0 102.3 0 98.6 0 98.2 0 104.5 0 84 0 73.8 0 103.9 0 106 0 97.2 0 102.6 0 89 0 93.8 0 116.7 0 106.8 0 98.5 0 118.7 0 90 0 91.9 1 113.3 1 113.1 1 104.1 1 108.7 1 96.7 1 101 1 116.9 1 105.8 1 99 1 129.4 1 83 1 88.9 1 115.9 1 104.2 1 113.4 1 112.2 1 100.8 1 107.3 1 126.6 1 102.9 1 117.9 1 128.8 1 87.5 1 93.8 1 122.7 1 126.2 1 124.6 1 116.7 1 115.2 1 111.1 1 129.9 1 113.3 1 118.5 1 133.5 1 102.1 1 102.4 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
y[t] = + 80.6502857142857 + 11.8871428571428x[t] + 24.7374285714286M1[t] + 24.8574285714286M2[t] + 20.5774285714286M3[t] + 19.5774285714286M4[t] + 10.9774285714285M5[t] + 13.9774285714286M6[t] + 30.6974285714285M7[t] + 17.6974285714285M8[t] + 18.6374285714286M9[t] + 35.1974285714286M10[t] + 1.53742857142857M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)80.65028571428573.3606223.998600
x11.88714285714281.8119256.560500
M124.73742857142864.3030845.74881e-060
M224.85742857142864.3030845.77671e-060
M320.57742857142864.3030844.7821.8e-059e-06
M419.57742857142864.3030844.54963.8e-051.9e-05
M510.97742857142854.3030842.55110.0140550.007027
M613.97742857142864.3030843.24820.0021470.001073
M730.69742857142854.3030847.133800
M817.69742857142854.3030844.11270.0001567.8e-05
M918.63742857142864.3030844.33127.7e-053.9e-05
M1035.19742857142864.3030848.179600
M111.537428571428574.3030840.35730.7224780.361239


Multiple Linear Regression - Regression Statistics
Multiple R0.883269342311904
R-squared0.780164731068104
Adjusted R-squared0.724036577298258
F-TEST (value)13.899704135418
F-TEST (DF numerator)12
F-TEST (DF denominator)47
p-value1.14690479335877e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation6.77960283421276
Sum Squared Residuals2160.26168571429


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1106.8105.3877142857141.41228571428576
2113.7105.5077142857148.19228571428573
3102.5101.2277142857141.27228571428569
496.6100.227714285714-3.62771428571431
592.191.62771428571430.47228571428566
695.694.62771428571430.972285714285704
7102.3111.347714285714-9.04771428571428
898.698.34771428571430.252285714285688
998.299.2877142857143-1.08771428571426
10104.5115.847714285714-11.3477142857143
118482.18771428571431.81228571428573
1273.880.6502857142857-6.8502857142857
13103.9105.387714285714-1.48771428571430
14106105.5077142857140.492285714285705
1597.2101.227714285714-4.02771428571428
16102.6100.2277142857142.37228571428571
178991.6277142857143-2.62771428571428
1893.894.6277142857143-0.827714285714281
19116.7111.3477142857145.35228571428571
20106.898.34771428571438.45228571428572
2198.599.2877142857143-0.787714285714292
22118.7115.8477142857142.85228571428571
239082.18771428571437.81228571428571
2491.992.5374285714286-0.637428571428575
25113.3117.274857142857-3.97485714285716
26113.1117.394857142857-4.29485714285715
27104.1113.114857142857-9.01485714285714
28108.7112.114857142857-3.41485714285713
2996.7103.514857142857-6.81485714285712
30101106.514857142857-5.51485714285714
31116.9123.234857142857-6.33485714285714
32105.8110.234857142857-4.43485714285714
3399111.174857142857-12.1748571428571
34129.4127.7348571428571.66514285714285
358394.0748571428571-11.0748571428571
3688.992.5374285714286-3.63742857142858
37115.9117.274857142857-1.37485714285715
38104.2117.394857142857-13.1948571428571
39113.4113.1148571428570.285142857142872
40112.2112.1148571428570.0851428571428692
41100.8103.514857142857-2.71485714285713
42107.3106.5148571428570.785142857142858
43126.6123.2348571428573.36514285714284
44102.9110.234857142857-7.33485714285713
45117.9111.1748571428576.72514285714286
46128.8127.7348571428571.06514285714286
4787.594.0748571428571-6.57485714285715
4893.892.53742857142861.26257142857142
49122.7117.2748571428575.42514285714285
50126.2117.3948571428578.80514285714285
51124.6113.11485714285711.4851428571429
52116.7112.1148571428574.58514285714287
53115.2103.51485714285711.6851428571429
54111.1106.5148571428574.58514285714286
55129.9123.2348571428576.66514285714286
56113.3110.2348571428573.06514285714286
57118.5111.1748571428577.32514285714285
58133.5127.7348571428575.76514285714285
59102.194.07485714285718.02514285714285
60102.492.53742857142869.86257142857143
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/1yv041195400212.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/1yv041195400212.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/2fcpt1195400212.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/2fcpt1195400212.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/3zodm1195400213.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/3zodm1195400213.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/4t9gp1195400213.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/4t9gp1195400213.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/5domh1195400213.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/5domh1195400213.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/6c35e1195400213.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/6c35e1195400213.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/76dt11195400213.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/76dt11195400213.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/83yq01195400213.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/83yq01195400213.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/93cne1195400213.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195399950vk0saoqov44p8mv/93cne1195400213.ps (open in new window)


 
Parameters:
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by