Home » date » 2007 » Nov » 18 » attachments

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 18 Nov 2007 07:22:40 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd.htm/, Retrieved Sun, 18 Nov 2007 15:16:22 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
1687 0 -183,9235445 1508 0 -177,0726091 1507 0 -228,6351091 1385 0 -237,4476091 1632 0 -127,7601091 1511 0 -193,0101091 1559 0 -220,6351091 1630 0 -164,5101091 1579 0 -268,3226091 1653 0 -333,6976091 2152 0 -34,26010911 2148 0 -154,8851091 1752 0 -97,74528053 1765 0 101,1056549 1717 0 2,543154874 1558 0 -43,26934513 1575 0 -163,5818451 1520 0 -162,8318451 1805 0 46,54315487 1800 0 26,66815487 1719 0 -107,1443451 2008 0 42,48065487 2242 0 76,91815487 2478 0 196,2931549 2030 0 201,4329835 1655 0 12,28391886 1693 0 -0,278581137 1623 0 42,90891886 1805 0 87,59641886 1746 0 84,34641886 1795 0 57,72141886 1926 0 173,8464189 1619 0 -185,9660811 1992 0 47,65891886 2233 0 89,09641886 2192 0 -68,52858114 2080 0 272,6112475 1768 0 146,4621829 1835 0 162,8996829 1569 0 10,08718285 1976 0 279,7746829 1853 0 212,5246829 1965 0 248,8996829 1689 0 -41,97531715 1778 0 -5,787817149 1976 0 52,83718285 2397 0 274,2746829 2654 0 414,6496829 2097 0 310,7895114 1963 0 362,6404468 1677 0 26,07794684 1941 0 403,2654468 2003 0 327,9529468 1813 0 193,7029468 2012 0 317,0779468 1912 0 202,2029468 2084 0 321,3904468 2080 0 178,0154468 2118 0 16,45294684 2150 0 -68,17205316 1608 0 -157,0322246 1503 0 -76,18128917 1548 0 -81,74378917 1382 0 -134,5562892 1731 0 77,13121083 1798 0 199,8812108 1779 0 105,2562108 1887 0 198,3812108 2004 0 262,5687108 2077 0 196,1937108 2092 0 11,63121083 2051 0 -145,9937892 1577 0 -166,8539606 1356 0 -202,0030252 1652 0 43,43447482 1382 0 -113,3780252 1519 0 -113,6905252 1421 0 -155,9405252 1442 0 -210,5655252 1543 0 -124,4405252 1656 0 -64,25302518 1561 0 -298,6280252 1905 0 -154,1905252 2199 0 23,18447482 1473 0 -249,6756966 1655 0 118,1752388 1407 0 -180,3872612 1395 0 -79,19976119 1530 0 -81,51226119 1309 0 -246,7622612 1526 0 -105,3872612 1327 0 -319,2622612 1627 0 -72,07476119 1748 0 -90,44976119 1958 0 -80,01226119 2274 0 119,3627388 1648 0 -53,49743261 1401 0 -114,6464972 1411 0 -155,2089972 1403 0 -50,02149721 1394 0 -196,3339972 1520 0 -14,58399721 1528 0 -82,20899721 1643 0 17,91600279 1515 0 -162,8964972 1685 0 -132,2714972 2000 0 -16,83399721 2215 0 81,54100279 1956 0 275,6808314 1462 0 -32,46823322 1563 0 17,96926678 1459 0 27,15676678 1446 0 -123,1557332 1622 0 108,5942668 1657 0 67,96926678 1638 0 34,09426678 1643 0 -13,71823322 1683 0 -113,0932332 2050 0 54,34426678 2262 0 149,7192668 1813 0 153,8590954 1445 0 -28,28996923 1762 0 238,1475308 1461 0 50,33503077 1556 0 8,022530771 1431 0 -61,22746923 1427 0 -140,8524692 1554 0 -28,72746923 1645 0 9,460030771 1653 0 -121,9149692 2016 0 41,52253077 2207 0 115,8975308 1665 0 27,03735936 1361 0 -91,11170524 1506 0 3,325794759 1360 0 -29,48670524 1453 0 -73,79920524 1522 0 50,95079476 1460 0 -86,67420524 1552 0 -9,54920524 1548 0 -66,36170524 1827 0 73,26329476 1737 0 -216,2992052 1941 0 -128,9242052 1474 0 -142,7843767 1458 0 27,06655875 1542 0 60,50405875 1404 0 35,69155875 1522 0 16,37905875 1385 0 -64,87094125 1641 0 115,5040587 1510 0 -30,37094125 1681 0 87,81655875 1938 0 205,4415587 1868 0 -64,12094125 1726 0 -322,7459413 1456 0 -139,6061127 1445 0 35,24482274 1456 0 -4,317677263 1365 0 17,86982274 1487 0 2,557322737 1558 0 129,3073227 1488 0 -16,31767726 1684 0 164,8073227 1594 0 21,99482274 1850 0 138,6198227 1998 0 87,05732274 2079 0 51,43232274 1494 0 -80,42784867 1057 1 -105,1918797 1218 1 5,245620328 1168 1 68,43312033 1236 1 -0,879379672 1076 1 -105,1293797 1174 1 -82,75437967 1139 1 -132,6293797 1427 1 102,5581203 1487 1 23,18312033 1483 1 -180,3793797 1513 1 -267,0043797 1357 1 30,13544892 1165 1 23,98638432 1282 1 90,42388432 1110 1 31,61138432 1297 1 81,29888432 1185 1 25,04888432 1222 1 -13,57611568 1284 1 33,54888432 1444 1 140,7363843 1575 1 132,3613843 1737 1 94,79888432 1763 1 4,173884316
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Const[t] = + 1846.02995172578 -251.176611181584Inv.wet[t] + 1.00000000001661et[t] -1.50915849924538t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)1846.0299517257831.42832758.737800
Inv.wet-251.17661118158454.718719-4.59038e-064e-06
et1.000000000016610.1001089.989200
t-1.509158499245380.320581-4.70765e-062e-06


Multiple Linear Regression - Regression Statistics
Multiple R0.716713275798988
R-squared0.513677919706516
Adjusted R-squared0.505917460978429
F-TEST (value)66.1916953243184
F-TEST (DF numerator)3
F-TEST (DF denominator)188
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation203.570453314249
Sum Squared Residuals7790894.73896291


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
116871660.5972487234626.4027512765405
215081665.93902562435-157.939025624350
315071612.86736712425-105.867367124248
413851602.54570862486-217.545708624856
516321710.72405012743-78.724050127432
615111643.96489162710-132.964891627103
715591614.8307331274-55.8307331273989
816301669.44657462909-39.4465746290856
915791564.1249161281214.8750838718838
1016531497.24075762779155.759242372215
1121521795.16909912351356.830900876487
1221481673.03494063226474.965059367736
1317521728.6656107039723.3343892960326
1417651926.00738763802-161.007387638024
1517171825.93572911114-108.935729111142
1615581778.61407060714-220.614070607136
1715751656.79241213589-81.7924121358925
1815201656.03325363666-136.033253636660
1918051863.89909511089-58.8990951108913
2018001842.51493661132-42.5149366113159
2117191707.1932781398511.8067218601517
2220081855.30911961309152.690880386912
2322421888.23746111441353.762538885586
2424782006.10330264715471.896697352849
2520302009.7339727479920.2660272520087
2616551819.07574960560-164.075749605605
2716931805.00409110915-112.004091109151
2816231846.68243260762-223.682432607623
2918051889.86077410912-84.8607741091193
3017461885.10161560982-139.10161560982
3117951856.96745711013-61.9674571101324
3219261971.58329865282-45.5832986528155
3316191610.261640147598.73835985240528
3419921842.37748161223149.622518387771
3522331882.30582311367350.694176886328
3621921723.17166461181468.828335388191
3720802062.8023347582317.1976652417712
3817681935.14411165689-167.144111656888
3918351950.07245315792-115.072453157916
4015691795.75079460613-226.750794606133
4119762063.92913616137-87.9291361613663
4218531995.16997766100-142.169977661004
4319652030.03581916236-65.0358191623626
4416891737.65166060829-48.6516606082868
4517781772.330002110645.66999788935767
4619761829.44584361137146.554156388629
4723972049.37418516580347.625814834197
4826542188.24002666889465.759973331112
4920972082.8706966679214.1293033320818
5019632133.21247356953-170.212473569534
5116771795.1408151047-118.140815104699
5219412170.81915657172-229.819156571718
5320032093.99749807122-90.9974980712217
5418131958.23833956975-145.238339569747
5520122080.10418107255-68.1041810725504
5619121963.72002257140-51.7200225713973
5720842081.398364074132.60163592586877
5820801936.51420557250143.485794427495
5921181773.44254711058344.557452889424
6021501687.30838860993462.691611390074
6116081596.9390586692011.0609413307955
6215031676.2808356013-173.280835601302
6315481669.20917710196-121.209177101964
6413821614.88751857184-232.887518571842
6517311825.06586010611-94.0658601061117
6617981946.30670157890-148.306701578905
6717791850.17254307809-71.1725430780881
6818871941.78838458039-54.7883845803892
6920042004.46672608221-0.466726082209838
7020771936.58256758186140.417432418138
7120921750.51090910955341.489090890448
7220511591.37675057769459.623249422311
7315771569.007420678107.99257932190315
7413561532.34919757827-176.349197578268
7516521776.27753910310-124.277539103098
7613821617.95588058125-235.955880581249
7715191616.134222082-97.1342220819982
7814211572.37506358205-151.375063582051
7914421516.2409050819-74.2409050818986
8015431600.85674658408-57.8567465840835
8116561659.53508810584-3.53508810583768
8215611423.6509295827137.3490704173
8319051566.57927108585338.420728914147
8421991742.44511260955456.554887390446
8514731468.075782685784.92421731422319
8616551834.41755959264-179.417559592640
8714071534.34590108844-127.345901088437
8813951634.02424260087-239.024242600872
8915301630.20258410159-100.202584101588
9013091463.44342558960-154.443425589598
9115261603.3092670927-77.3092670927007
9213271387.92510858990-60.9251085899035
9316271633.60345010476-6.60345010476319
9417481613.71929160521134.280708394787
9519581622.64763310614335.352366893859
9622741820.51347460021453.486525399794
9716481646.144144688091.85585531190981
9814011583.48592159783-182.485921597829
9914111541.41426309791-130.414263097910
10014031645.09260459041-242.092604590412
10113941497.27094609874-103.270946098737
10215201677.51178759251-157.511787592509
10315281608.37762909214-80.377629092141
10416431706.99347059456-63.9934705945585
10515151524.67181210231-9.67181210231035
10616851553.78765360357131.212346396427
10720001667.71599509625332.284004903755
10822151764.58183659863450.418163401366
10919561957.21250671261-1.21250671261230
11014621647.55428358825-185.554283588249
11115631696.48262508984-133.482625089842
11214591704.16096659075-245.160966590749
11314461552.33930810901-106.339308109007
11416221782.58014961361-160.580149613611
11516571740.44599109369-83.4459910936905
11616381705.06183259388-67.0618325938826
11716431655.74017409384-12.7401740938432
11816831554.85601561295128.143984387053
11920501720.78435709648329.215642903517
12022621814.65019861882447.349801381179
12118131817.28086871964-4.28086871964461
12214451633.62264558737-188.622645587374
12317621898.55098712255-136.550987122554
12414611709.22932859019-248.229328590189
12515561665.40767009124-109.407670091241
12614311594.64851158985-163.648511589846
12714271513.51435311928-86.514353119278
12815541624.13019459189-70.1301945918947
12916451660.80853609428-15.8085360942835
13016531527.92437762186125.075622378144
13120161689.85271909533326.147280904675
13222071762.71856062732444.281439372685
13316651672.34923068659-7.34923068659388
13413611552.69100758539-191.691007585386
13515061645.61934908671-139.619349086709
13613601611.29769058792-251.297690587919
13714531565.47603208794-112.476032087938
13815221688.71687359076-166.716873590764
13914601549.58271508923-89.5827150892332
14015521625.19855659127-73.1985565912686
14115481566.87689809108-18.8768980910798
14218271704.99273959415122.007260405847
14317371413.9210811301323.078918869901
14419411499.78692263230441.213077367695
14514741484.41759263283-10.4175926328291
14614581652.75936958640-194.759369586404
14715421684.68771108771-142.687711087714
14814041658.36605258806-254.366052588057
14915221637.54439408849-115.544394088491
15013851554.78523558790-169.785235587896
15116411733.65107704165-92.6510770416462
15215101586.26691858998-76.2669185899782
15316811702.94526009270-21.9452600926956
15419381819.06110154540118.938898454596
15518681547.98944309168320.010556908318
15617261287.85528453814438.144715461859
15714561469.48595464194-13.4859546419372
15814451642.82773158560-197.827731585596
15914561601.75607308269-145.756073082693
16013651622.43441458682-257.434414586816
16114871605.61275608432-118.612756084317
16215581730.85359755018-172.853597550176
16314881583.71943908851-95.7194390885124
16416841763.33528055227-79.335280552275
16515941619.01362209066-25.0136220906579
16618501734.12946355335115.870536446651
16719981681.05780509325316.942194906752
16820791643.92364659341435.076353406589
16914941510.55431668198-16.5543166819755
17010571233.10451597073-176.104515970735
17112181342.03285750132-124.032857501324
17211681403.71119900513-235.711199005128
17312361332.88954050273-96.889540502731
17410761227.13038197375-151.130381973754
17511741247.99622350488-73.9962235048806
17611391196.61206497481-57.6120649748069
17714271430.29040647947-3.29040647946732
17814871349.40624800890137.593751991096
17914831144.33458947628338.665410523722
18015131056.20043097559456.799569024406
18113571351.831101101285.16889889871692
18211651344.17287800194-179.172878001936
18312821409.10121950379-127.101219503794
18411101348.77956100357-238.779561003571
18512971396.95790250515-99.9579025051512
18611851339.19874400497-154.198744004972
18712221299.06458550508-77.0645855050848
18812841344.68042700662-60.6804270066221
18914441450.35876848916-6.35876848915676
19015751440.47460998977134.525390010228
19117371401.40295150990335.597048490097
19217631309.26879300515453.731206994847
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/1a3501195395753.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/1a3501195395753.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/22as71195395753.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/22as71195395753.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/3rukn1195395753.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/3rukn1195395753.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/4dnjc1195395753.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/4dnjc1195395753.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/5lb2b1195395753.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/5lb2b1195395753.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/6gi9i1195395753.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/6gi9i1195395753.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/7mqfz1195395754.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/7mqfz1195395754.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/8rbxg1195395754.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/8rbxg1195395754.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/97dzv1195395754.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195395372reham8zpg0vyxqd/97dzv1195395754.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by