Home » date » 2007 » Nov » 18 » attachments

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Sun, 18 Nov 2007 04:51:00 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs.htm/, Retrieved Sun, 18 Nov 2007 12:45:05 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
7.4 0 7.2 0 7,0 0 6.6 0 6.4 0 6.4 0 6.8 0 7.3 0 7,0 0 7,0 0 6.7 0 6.7 0 6.3 0 6.2 0 6,0 0 6.3 0 6.2 0 6.1 0 6.2 0 6.6 0 6.6 0 7.8 0 7.4 0 7.4 1 7.5 1 7.4 1 7.4 1 7,0 1 6.9 1 6.9 1 7.6 1 7.7 1 7.6 1 8.2 1 8,0 1 8.1 1 8.3 1 8.2 1 8.1 1 7.7 1 7.6 1 7.7 1 8.2 1 8.4 1 8.4 1 8.6 1 8.4 1 8.5 1 8.7 1 8.7 1 8.6 1 7.4 1 7.3 1 7.4 1 9,0 1 9.2 1 9.2 1 8.5 1 8.3 1 8.3 1 8.6 1 8.6 1 8.5 1 8.1 1 8.1 1 8,0 1 8.6 1 8.7 1 8.7 1 8.6 1 8.4 1 8.4 1 8.7 1 8.7 1 8.5 1 8.3 1 8.3 1 8.3 1 8.1 1 8.2 1 8.1 1 8.1 1 7.9 1 7.7 1 8.1 1 8,0 1 7.7 1 7.8 1 7.6 1 7.4 1 7.7 1 7.9 1 7.6 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
x[t] = + 6.70434782608696 + 1.38708074534161y[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)6.704347826086960.1068762.733900
y1.387080745341610.12318211.260400


Multiple Linear Regression - Regression Statistics
Multiple R0.763007246200546
R-squared0.58218005775454
Adjusted R-squared0.577588629817777
F-TEST (value)126.797167629064
F-TEST (DF numerator)1
F-TEST (DF denominator)91
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.512528984548903
Sum Squared Residuals23.9044223602484


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
17.46.704347826086960.695652173913044
27.26.704347826086960.495652173913043
376.704347826086960.295652173913044
46.66.70434782608696-0.104347826086957
56.46.70434782608696-0.304347826086956
66.46.70434782608696-0.304347826086956
76.86.704347826086960.0956521739130434
87.36.704347826086960.595652173913043
976.704347826086960.295652173913044
1076.704347826086960.295652173913044
116.76.70434782608696-0.00434782608695632
126.76.70434782608696-0.00434782608695632
136.36.70434782608696-0.404347826086957
146.26.70434782608696-0.504347826086956
1566.70434782608696-0.704347826086957
166.36.70434782608696-0.404347826086957
176.26.70434782608696-0.504347826086956
186.16.70434782608696-0.604347826086957
196.26.70434782608696-0.504347826086956
206.66.70434782608696-0.104347826086957
216.66.70434782608696-0.104347826086957
227.86.704347826086961.09565217391304
237.46.704347826086960.695652173913044
247.48.09142857142857-0.691428571428571
257.58.09142857142857-0.591428571428571
267.48.09142857142857-0.691428571428571
277.48.09142857142857-0.691428571428571
2878.09142857142857-1.09142857142857
296.98.09142857142857-1.19142857142857
306.98.09142857142857-1.19142857142857
317.68.09142857142857-0.491428571428572
327.78.09142857142857-0.391428571428571
337.68.09142857142857-0.491428571428572
348.28.091428571428570.108571428571428
3588.09142857142857-0.0914285714285714
368.18.091428571428570.00857142857142826
378.38.091428571428570.208571428571429
388.28.091428571428570.108571428571428
398.18.091428571428570.00857142857142826
407.78.09142857142857-0.391428571428571
417.68.09142857142857-0.491428571428572
427.78.09142857142857-0.391428571428571
438.28.091428571428570.108571428571428
448.48.091428571428570.308571428571429
458.48.091428571428570.308571428571429
468.68.091428571428570.508571428571428
478.48.091428571428570.308571428571429
488.58.091428571428570.408571428571429
498.78.091428571428570.608571428571428
508.78.091428571428570.608571428571428
518.68.091428571428570.508571428571428
527.48.09142857142857-0.691428571428571
537.38.09142857142857-0.791428571428572
547.48.09142857142857-0.691428571428571
5598.091428571428570.908571428571429
569.28.091428571428571.10857142857143
579.28.091428571428571.10857142857143
588.58.091428571428570.408571428571429
598.38.091428571428570.208571428571429
608.38.091428571428570.208571428571429
618.68.091428571428570.508571428571428
628.68.091428571428570.508571428571428
638.58.091428571428570.408571428571429
648.18.091428571428570.00857142857142826
658.18.091428571428570.00857142857142826
6688.09142857142857-0.0914285714285714
678.68.091428571428570.508571428571428
688.78.091428571428570.608571428571428
698.78.091428571428570.608571428571428
708.68.091428571428570.508571428571428
718.48.091428571428570.308571428571429
728.48.091428571428570.308571428571429
738.78.091428571428570.608571428571428
748.78.091428571428570.608571428571428
758.58.091428571428570.408571428571429
768.38.091428571428570.208571428571429
778.38.091428571428570.208571428571429
788.38.091428571428570.208571428571429
798.18.091428571428570.00857142857142826
808.28.091428571428570.108571428571428
818.18.091428571428570.00857142857142826
828.18.091428571428570.00857142857142826
837.98.09142857142857-0.191428571428571
847.78.09142857142857-0.391428571428571
858.18.091428571428570.00857142857142826
8688.09142857142857-0.0914285714285714
877.78.09142857142857-0.391428571428571
887.88.09142857142857-0.291428571428572
897.68.09142857142857-0.491428571428572
907.48.09142857142857-0.691428571428571
917.78.09142857142857-0.391428571428571
927.98.09142857142857-0.191428571428571
937.68.09142857142857-0.491428571428572
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/1lpht1195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/1lpht1195386650.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/2ivl81195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/2ivl81195386650.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/35frh1195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/35frh1195386650.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/46uuv1195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/46uuv1195386650.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/5mm6f1195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/5mm6f1195386650.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/6s5kp1195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/6s5kp1195386650.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/7mdg31195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/7mdg31195386650.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/8plbj1195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/8plbj1195386650.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/9z2zd1195386650.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/18/t1195386304snm8bly5iq4ncvs/9z2zd1195386650.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by