Home » date » 2007 » Nov » 16 » attachments

Paper 20

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Fri, 16 Nov 2007 09:33:57 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6.htm/, Retrieved Fri, 16 Nov 2007 17:29:40 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
100,70 99,20 100,80 99,20 101,30 99,80 97,90 95,80 100,80 98,10 97,60 103,50 96,50 93,80 100,80 96,10 96,40 103,10 96,60 94,40 90,10 95,50 97,00 105,60 96,60 94,80 95,70 95,70 96,40 105,70 95,50 96,90 88,60 95,90 94,70 106,60 91,80 93,10 93,30 96,20 89,30 107,00 89,30 92,20 93,30 95,70 85,90 105,20 87,00 90,80 93,30 93,40 83,30 105,70 85,90 92,40 93,30 93,40 81,50 105,00 88,00 91,20 93,30 91,90 85,00 105,10 87,90 89,80 93,30 92,80 84,80 105,90 89,20 85,80 88,60 93,20 87,50 105,30 90,90 88,20 97,40 93,80 89,00 104,90 91,60 89,90 97,40 93,80 90,00 103,20 90,20 91,80 102,90 85,10 89,60 103,40 89,10 93,40 102,90 86,10 87,40 104,40 87,50 93,80 102,90 86,50 84,80 104,50 86,30 95,00 105,10 90,00 81,90 105,90 86,00 97,30 105,10 89,10 81,10 110,60 84,40 95,30 105,10 88,40 79,10 112,40 86,10 97,90 105,10 91,40 80,50 111,80 91,00 97,00 105,10 88,00 88,50 111,00 92,70 97,00 105,10 87,80 90,90 111,00 88,00 65,20 96,90 87,40 84,90 109,10 84,30 64,10 96,90 86,20 80,00 107,80 82,20 65,60 96,90 87,80 76,50 107,20 80,80 66,50 96,90 84,60 75,40 108,40 79,40 65,60 96,90 85,00 73,50 107,50 80,20 66,10 96,90 85,70 74,30 106,40 82,20 65,90 96,50 83,90 77,70 106,20 82,20 65,80 96,50 83,60 77,90 104,90 81,20 64,10 96,50 82,60 76,70 106,20 82,10 63,50 96,00 84,90 77,20 107,60 88,10 64,40 96,00 84,20 86,00 107,00 88,50 66,00 96,00 83,80 86,90 104,50 92,10 67,70 96,00 84,20 92,00 105,10 98,60 70,40 96,00 84,40 101,70 104,70 100,90 74,10 96,00 86,00 104,50 103,70 100,60 75,50 105,80 89,70 101,70 104,90 101,10 80,80 105,80 93,90 100,60 105,90 102,10 83,90 105,80 98,40 100,30 106,10 103,60 83,60 105,80 98,30 102,50 106,10 102,80 88,70 105,80 99,30 101,00 106,80 108,30 87,00 105,80 100,50 108,60 106,40 104,00 86,90 105,80 96,90 103,40 107,80 106,10 88,60 105,80 97,50 106,40 107,60 106,30 88,60 105,80 97,50 106,60 107,60 109,00 86,90 123,60 98,90 108,90 108,40 111,00 86,10 142,20 99,30 110,50 109,50 113,70 86,60 142,20 100,60 114,00 109,20 112,70 83,90 141,20 99,90 112,80 109,10 110,30 84,20 141,20 98,80 109,60 110,00 114,50 83,20 141,20 98,60 116,00 109,00 119,30 78,40 124,70 98,20 124,60 109,00 121,80 77,60 124,70 96,30 129,00 111,90 125,40 77,10 124,70 103,40 131,50 109,30 129,70 76,80 122,70 102,70 138,60 112,10 129,40 76,80 122,70 102,70 138,10 112,10 134,50 76,80 122,70 102,60 146,30 112,50 141,20 76,80 123,30 101,60 157,60 113,60 141,40 78,70 123,30 100,90 158,40 112,90 152,20 78,70 123,30 101,10 176,30 114,00 167,70 78,70 127,20 105,60 199,90 116,10 173,30 78,70 127,20 104,70 210,40 116,50 168,70 78,70 127,20 103,80 202,60 117,10 172,60 83,70 140,00 105,40 207,10 117,10 169,80 83,70 140,00 105,60 202,00 117,10 172,00 87,90 140,00 109,20 203,40 116,50 179,40 87,90 140,00 109,50 216,30 116,50 174,60 84,50 140,00 110,10 207,30 116,30 172,50 84,50 140,00 110,00 203,50 116,50 172,60 84,40 139,00 110,30 204,40 119,20 176,30 87,50 139,00 109,30 203,70 118,60 178,90 89,20 139,00 110,20 205,70 117,50 179,60 88,90 147,00 113,00 208,00 117,10 179,90 88,80 147,00 113,60 209,30 117,60 180,30 89,50 147,00 111,20 208,70 118,30 180,90 90,40 147,10 111,30 206,50 118,60 177,70 87,90 147,10 115,00 204,50 116,70
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
TM[t] = -7.79895678054507 -0.0335405225086837EGKS[t] + 0.0994588527017785BUIZEN[t] + 0.338478881529632NEGKS[t] + 0.624837353466008NF[t] + 0.0535379228849357`GM `[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)-7.798956780545077.161466-1.0890.279680.13984
EGKS-0.03354052250868370.016356-2.05060.0438430.021922
BUIZEN0.09945885270177850.0153236.490700
NEGKS0.3384788815296320.0430357.865200
NF0.6248373534660080.00905369.017400
`GM `0.05353792288493570.0649020.82490.4120760.206038


Multiple Linear Regression - Regression Statistics
Multiple R0.99943890991353
R-squared0.998878134649145
Adjusted R-squared0.99880233293625
F-TEST (value)13177.5140230020
F-TEST (DF numerator)5
F-TEST (DF denominator)74
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation1.19634092346888
Sum Squared Residuals105.911138782311


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1100.7101.115489396696-0.415489396695537
297.998.7433925103924-0.843392510392405
396.597.3622957990373-0.862295799037326
496.696.58362165199730.0163783480026958
596.696.8253221746386-0.225322174638585
695.595.10238562919790.397614370802138
791.892.4461333473256-0.646133347325636
889.390.0862651138413-0.786265113841327
98787.7569122602662-0.756912260266172
1085.986.541063641994-0.641063641994005
118888.2658784761295-0.265878476129506
1287.988.5353290686331-0.63532906863307
1389.289.9923642042086-0.792364204208559
1490.991.9060330439262-1.00603304392619
1591.692.382837040223-0.782837040223049
1690.289.68214011119910.517859888800899
1789.188.64584990197460.454150098025423
1887.587.14860191885980.351398081140185
1986.386.7747636201345-0.474763620134514
208686.1447477797742-0.144747779774249
2184.484.8215871619818-0.421587161981748
2286.186.5924679891695-0.492467989169524
239190.42769475164670.572305248353299
2492.791.85960862365920.840391376340807
258888.1244969203915-0.124496920391489
2684.384.6239145055816-0.323914505581620
2782.282.896116441404-0.696116441404008
2880.881.1597219689007-0.359721968900693
2979.480.0899248895885-0.689924889588492
3080.280.7510680130043-0.551068013004276
3182.282.2224700068794-0.022470006879401
3282.282.17964856561420.0203514343858335
3381.281.2179830479405-0.0179830479405009
3482.182.3542511313849-0.254251131384905
3588.187.55357540082620.546424599173750
3688.587.79302782310760.706972176892433
3792.191.09019374386231.00980625613773
3898.697.1068372688611.49316273113894
39100.999.22031021284621.67968978715379
40100.699.71512301722820.884876982771768
41101.1100.3251863844290.774813615571013
42102.1101.5676221100730.532377889927401
43103.6102.9184785562970.681521443702544
44102.8102.1861212888530.613878711146758
45108.3107.3766635521410.923336447858752
46104102.9872924849011.01270751509888
47106.1104.9971654013751.10283459862483
48106.3105.1221328720681.17786712793164
49109108.9033460238460.0966539761539607
50111111.974136135437-0.97413613543695
51113.7114.568257780437-0.868257780436668
52112.7113.567264504990-0.867264504989893
53110.3111.23358017806-0.933580178059907
54114.5115.144846063560-0.644846063560175
55119.3118.9029791892180.397020810781655
56121.8121.1912460639360.608753936064255
57125.4125.0341111682150.365888831785339
58129.7129.1945717961790.50542820382055
59129.4128.8821531194460.51784688055357
60134.5133.9933866988690.506613301131277
61141.2140.8341369382990.365863061700521
62141.4140.9958680652160.404131934784417
63152.2152.307044183736-0.107044183736498
64167.7169.076679856013-1.37667985601293
65173.3175.354256243183-2.05425624318331
66168.7170.208016646503-1.50801664650274
67172.6174.666721649587-2.06672164958653
68169.8171.547746923216-1.74774692321580
69172173.468050243307-1.46805024330748
70179.4181.629995767478-2.22999576747787
71174.6176.312877107154-1.71287710715413
72172.5173.915354860407-1.41535486040731
73172.6174.627699734324-2.02769973432402
74176.3173.7157363318602.58426366813971
75178.9175.1541314287313.74586857126923
76179.6178.3233160191981.27668398080155
77179.9179.3688149213150.531185078684633
78180.3178.1955613738282.104438626172
79180.9176.8505878762344.0494121237664
80177.7176.8354142837520.864585716248428
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/1ha8s1195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/1ha8s1195230832.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/2ytw91195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/2ytw91195230832.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/3nqmq1195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/3nqmq1195230832.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/4qutz1195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/4qutz1195230832.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/5awe11195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/5awe11195230832.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/6hqhk1195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/6hqhk1195230832.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/7wsyg1195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/7wsyg1195230832.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/87qph1195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/87qph1195230832.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/9ln311195230832.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195230571jh907c36pq2mpa6/9ln311195230832.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by