Home » date » 2007 » Nov » 16 » attachments

Q3_WS8_Rik

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Fri, 16 Nov 2007 08:23:36 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju.htm/, Retrieved Fri, 16 Nov 2007 16:18:45 +0100
 
User-defined keywords:
Rik, workshop 8, eigen gegevens, regressie analyse, EDA
 
Dataseries X:
» Textbox « » Textfile « » CSV «
513 0 2 503 0 2 471 0 2 471 0 2 476 0 2 475 0 2 470 0 2 461 0 2 455 0 2 456 0 2 517 0 2 525 0 1 523 0 1 519 0 1 509 0 1 512 0 1 519 0 1 517 0 1 510 0 1 509 0 1 501 0 1 507 0 1 569 0 1 580 0 1 578 0 1 565 0 1 547 0 1 555 0 1 562 0 0 561 0 0 555 0 0 544 0 0 537 0 0 543 0 0 594 0 0 611 0 0 613 0 0 611 0 0 594 0 0 595 0 0 591 0 0 589 0 0 584 0 0 573 0 0 567 0 0 569 0 0 621 0 0 629 0 0 628 0 0 612 0 0 595 1 0 597 1 0 593 1 0 590 1 0 580 1 0 574 1 0 573 1 0 573 1 0 620 1 0 626 1 0 620 1 0 588 1 0 566 1 0 557 1 0 561 1 0 549 1 0 532 1 0 526 1 0 511 1 0 499 1 0 555 1 0 565 1 0 542 1 0
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Werklh[t] = + 611.764523175355 -14.3070561873757LisStr[t] -52.9865133386884`9/11 `[t] -3.54164235685386M1[t] -7.7223382516665M2[t] -24.6711622204371M3[t] -23.8378288871039M4[t] -30.1689144435519M5[t] -33.668914443552M6[t] -42.0022477768852M7[t] -49.3355811102186M8[t] -56.5022477768852M9[t] -56.0022477768852M10[t] -1.16891444355192M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)611.7645231753559.46354364.644300
LisStr-14.30705618737576.378918-2.24290.0286750.014338
`9/11 `-52.98651333868844.005741-13.227600
M1-3.5416423568538612.254717-0.2890.7735930.386796
M2-7.722338251666512.746818-0.60580.5469550.273477
M3-24.671162220437112.75693-1.93390.0579210.028961
M4-23.837828887103912.75693-1.86860.0666430.033322
M5-30.168914443551912.704413-2.37470.0208350.010417
M6-33.66891444355212.704413-2.65020.0103110.005155
M7-42.002247776885212.704413-3.30610.0016130.000807
M8-49.335581110218612.704413-3.88330.0002630.000131
M9-56.502247776885212.704413-4.44753.9e-052e-05
M10-56.002247776885212.704413-4.40814.5e-052.2e-05
M11-1.1689144435519212.704413-0.0920.9270030.463501


Multiple Linear Regression - Regression Statistics
Multiple R0.90349926934115
R-squared0.816310929699992
Adjusted R-squared0.775837066752533
F-TEST (value)20.1688415746151
F-TEST (DF numerator)13
F-TEST (DF denominator)59
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation21.9742835076412
Sum Squared Residuals28489.2790047774


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1513502.24985414112310.750145858877
2503498.0691582463114.93084175368863
3471481.12033427754-10.1203342775403
4471481.953667610874-10.9536676108739
5476475.6225820544260.377417945574162
6475472.1225820544262.87741794557407
7470463.7892487210936.21075127890751
8461456.4559153877594.54408461224077
9455449.2892487210925.71075127890764
10456449.7892487210936.21075127890741
11517504.62258205442612.3774179455741
12525558.778009836666-33.7780098366662
13523555.236367479812-32.2363674798124
14519551.055671585-32.0556715849998
15509534.106847616229-25.1068476162292
16512534.940180949562-22.9401809495624
17519528.609095393114-9.60909539311436
18517525.109095393114-8.10909539311434
19510516.775762059781-6.77576205978102
20509509.442428726448-0.442428726447690
21501502.275762059781-1.27576205978107
22507502.7757620597814.22423794021898
23569557.60909539311411.3909046068857
24580558.77800983666621.2219901633337
25578555.23636747981222.7636325201876
26565551.05567158513.9443284150002
27547534.10684761622912.8931523837708
28555534.94018094956220.0598190504376
29562581.595608731803-19.5956087318028
30561578.095608731803-17.0956087318028
31555569.76227539847-14.7622753984695
32544562.428942065136-18.4289420651362
33537555.26227539847-18.2622753984696
34543555.76227539847-12.7622753984695
35594610.595608731803-16.5956087318028
36611611.764523175355-0.764523175354762
37613608.2228808185014.77711918149906
38611604.0421849236886.95781507631172
39594587.0933609549186.90663904508235
40595587.9266942882517.07330571174907
41591581.5956087318039.40439126819715
42589578.09560873180310.9043912681972
43584569.7622753984714.2377246015305
44573562.42894206513610.5710579348638
45567555.2622753984711.7377246015305
46569555.7622753984713.2377246015305
47621610.59560873180310.4043912681972
48629611.76452317535517.2354768246452
49628608.22288081850119.7771191814991
50612604.0421849236887.95781507631172
51595572.78630476754222.2136952324581
52597573.61963810087523.3803618991249
53593567.28855254442725.7114474555730
54590563.78855254442726.2114474555730
55580555.45521921109424.5447807889063
56574548.1218858777625.8781141222396
57573540.95521921109432.0447807889063
58573541.45521921109431.5447807889063
59620596.28855254442723.7114474555730
60626597.45746698797928.542533012021
61620593.91582463112526.0841753688749
62588589.735128736313-1.73512873631249
63566572.786304767542-6.78630476754185
64557573.619638100875-16.6196381008751
65561567.288552544427-6.28855254442706
66549563.788552544427-14.7885525444270
67532555.455219211094-23.4552192110937
68526548.12188587776-22.1218858777604
69511540.955219211094-29.9552192110937
70499541.455219211094-42.4552192110937
71555596.288552544427-41.288552544427
72565597.457466987979-32.457466987979
73542593.915824631125-51.9158246311251
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/17ol71195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/17ol71195226611.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/25lzo1195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/25lzo1195226611.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/323gm1195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/323gm1195226611.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/435gk1195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/435gk1195226611.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/5bw941195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/5bw941195226611.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/68dty1195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/68dty1195226611.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/714v01195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/714v01195226611.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/8a95s1195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/8a95s1195226611.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/9kn6o1195226611.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195226316nby13m7sfs6t6ju/9kn6o1195226611.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by