Home » date » 2007 » Nov » 16 » attachments

The Seatbeltlaw

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Fri, 16 Nov 2007 07:43:25 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp.htm/, Retrieved Fri, 16 Nov 2007 15:39:10 +0100
 
User-defined keywords:
Q1 - Q2 BREDER
 
Dataseries X:
» Textbox « » Textfile « » CSV «
1687 0 1508 0 1507 0 1385 0 1632 0 1511 0 1559 0 1630 0 1579 0 1653 0 2152 0 2148 0 1752 0 1765 0 1717 0 1558 0 1575 0 1520 0 1805 0 1800 0 1719 0 2008 0 2242 0 2478 0 2030 0 1655 0 1693 0 1623 0 1805 0 1746 0 1795 0 1926 0 1619 0 1992 0 2233 0 2192 0 2080 0 1768 0 1835 0 1569 0 1976 0 1853 0 1965 0 1689 0 1778 0 1976 0 2397 0 2654 0 2097 0 1963 0 1677 0 1941 0 2003 0 1813 0 2012 0 1912 0 2084 0 2080 0 2118 0 2150 0 1608 0 1503 0 1548 0 1382 0 1731 0 1798 0 1779 0 1887 0 2004 0 2077 0 2092 0 2051 0 1577 0 1356 0 1652 0 1382 0 1519 0 1421 0 1442 0 1543 0 1656 0 1561 0 1905 0 2199 0 1473 0 1655 0 1407 0 1395 0 1530 0 1309 0 1526 0 1327 0 1627 0 1748 0 1958 0 2274 0 1648 0 1401 0 1411 0 1403 0 1394 0 1520 0 1528 0 1643 0 1515 0 1685 0 2000 0 2215 0 1956 0 1462 0 1563 0 1459 0 1446 0 1622 0 1657 0 1638 0 1643 0 1683 0 2050 0 2262 0 1813 0 1445 0 1762 0 1461 0 1556 0 1431 0 1427 0 1554 0 1645 0 1653 0 2016 0 2207 0 1665 0 1361 0 1506 0 1360 0 1453 0 1522 0 1460 0 1552 0 1548 0 1827 0 1737 0 1941 0 1474 0 1458 0 1542 0 1404 0 1522 0 1385 0 1641 0 1510 0 1681 0 1938 0 1868 0 1726 0 1456 0 1445 0 1456 0 1365 0 1487 0 1558 0 1488 0 1684 0 1594 0 1850 0 1998 0 2079 0 1494 0 1057 1 1218 1 1168 1 1236 1 1076 1 1174 1 1139 1 1427 1 1487 1 1483 1 1513 1 1357 1 1165 1 1282 1 1110 1 1297 1 1185 1 1222 1 1284 1 1444 1 1575 1 1737 1 1763 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
y[t] = + 1717.75147928994 -396.055827116028x[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)1717.7514792899420.00033485.886100
x-396.05582711602857.786173-6.853800


Multiple Linear Regression - Regression Statistics
Multiple R0.445226892939612
R-squared0.198226986196661
Adjusted R-squared0.194007128229275
F-TEST (value)46.9748005095662
F-TEST (DF numerator)1
F-TEST (DF denominator)190
p-value9.762957109416e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation260.004336317031
Sum Squared Residuals12844428.4316954


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
116871717.75147928994-30.7514792899354
215081717.75147928994-209.751479289941
315071717.75147928994-210.751479289941
413851717.75147928994-332.751479289941
516321717.75147928994-85.7514792899409
615111717.75147928994-206.751479289941
715591717.75147928994-158.751479289941
816301717.75147928994-87.7514792899409
915791717.75147928994-138.751479289941
1016531717.75147928994-64.7514792899408
1121521717.75147928994434.248520710059
1221481717.75147928994430.248520710059
1317521717.7514792899434.2485207100591
1417651717.7514792899447.2485207100591
1517171717.75147928994-0.751479289940856
1615581717.75147928994-159.751479289941
1715751717.75147928994-142.751479289941
1815201717.75147928994-197.751479289941
1918051717.7514792899487.2485207100591
2018001717.7514792899482.2485207100591
2117191717.751479289941.24852071005914
2220081717.75147928994290.248520710059
2322421717.75147928994524.248520710059
2424781717.75147928994760.248520710059
2520301717.75147928994312.248520710059
2616551717.75147928994-62.7514792899409
2716931717.75147928994-24.7514792899409
2816231717.75147928994-94.7514792899409
2918051717.7514792899487.2485207100591
3017461717.7514792899428.2485207100591
3117951717.7514792899477.2485207100591
3219261717.75147928994208.248520710059
3316191717.75147928994-98.7514792899409
3419921717.75147928994274.248520710059
3522331717.75147928994515.248520710059
3621921717.75147928994474.248520710059
3720801717.75147928994362.248520710059
3817681717.7514792899450.2485207100591
3918351717.75147928994117.248520710059
4015691717.75147928994-148.751479289941
4119761717.75147928994258.248520710059
4218531717.75147928994135.248520710059
4319651717.75147928994247.248520710059
4416891717.75147928994-28.7514792899409
4517781717.7514792899460.2485207100591
4619761717.75147928994258.248520710059
4723971717.75147928994679.248520710059
4826541717.75147928994936.24852071006
4920971717.75147928994379.248520710059
5019631717.75147928994245.248520710059
5116771717.75147928994-40.7514792899409
5219411717.75147928994223.248520710059
5320031717.75147928994285.248520710059
5418131717.7514792899495.2485207100591
5520121717.75147928994294.248520710059
5619121717.75147928994194.248520710059
5720841717.75147928994366.248520710059
5820801717.75147928994362.248520710059
5921181717.75147928994400.248520710059
6021501717.75147928994432.248520710059
6116081717.75147928994-109.751479289941
6215031717.75147928994-214.751479289941
6315481717.75147928994-169.751479289941
6413821717.75147928994-335.751479289941
6517311717.7514792899413.2485207100591
6617981717.7514792899480.2485207100591
6717791717.7514792899461.2485207100591
6818871717.75147928994169.248520710059
6920041717.75147928994286.248520710059
7020771717.75147928994359.248520710059
7120921717.75147928994374.248520710059
7220511717.75147928994333.248520710059
7315771717.75147928994-140.751479289941
7413561717.75147928994-361.751479289941
7516521717.75147928994-65.7514792899408
7613821717.75147928994-335.751479289941
7715191717.75147928994-198.751479289941
7814211717.75147928994-296.751479289941
7914421717.75147928994-275.751479289941
8015431717.75147928994-174.751479289941
8116561717.75147928994-61.7514792899409
8215611717.75147928994-156.751479289941
8319051717.75147928994187.248520710059
8421991717.75147928994481.248520710059
8514731717.75147928994-244.751479289941
8616551717.75147928994-62.7514792899409
8714071717.75147928994-310.751479289941
8813951717.75147928994-322.751479289941
8915301717.75147928994-187.751479289941
9013091717.75147928994-408.751479289941
9115261717.75147928994-191.751479289941
9213271717.75147928994-390.751479289941
9316271717.75147928994-90.7514792899409
9417481717.7514792899430.2485207100591
9519581717.75147928994240.248520710059
9622741717.75147928994556.248520710059
9716481717.75147928994-69.7514792899408
9814011717.75147928994-316.751479289941
9914111717.75147928994-306.751479289941
10014031717.75147928994-314.751479289941
10113941717.75147928994-323.751479289941
10215201717.75147928994-197.751479289941
10315281717.75147928994-189.751479289941
10416431717.75147928994-74.7514792899409
10515151717.75147928994-202.751479289941
10616851717.75147928994-32.7514792899409
10720001717.75147928994282.248520710059
10822151717.75147928994497.248520710059
10919561717.75147928994238.248520710059
11014621717.75147928994-255.751479289941
11115631717.75147928994-154.751479289941
11214591717.75147928994-258.751479289941
11314461717.75147928994-271.751479289941
11416221717.75147928994-95.7514792899409
11516571717.75147928994-60.7514792899409
11616381717.75147928994-79.7514792899409
11716431717.75147928994-74.7514792899409
11816831717.75147928994-34.7514792899409
11920501717.75147928994332.248520710059
12022621717.75147928994544.248520710059
12118131717.7514792899495.2485207100591
12214451717.75147928994-272.751479289941
12317621717.7514792899444.2485207100591
12414611717.75147928994-256.751479289941
12515561717.75147928994-161.751479289941
12614311717.75147928994-286.751479289941
12714271717.75147928994-290.751479289941
12815541717.75147928994-163.751479289941
12916451717.75147928994-72.7514792899409
13016531717.75147928994-64.7514792899408
13120161717.75147928994298.248520710059
13222071717.75147928994489.248520710059
13316651717.75147928994-52.7514792899409
13413611717.75147928994-356.751479289941
13515061717.75147928994-211.751479289941
13613601717.75147928994-357.751479289941
13714531717.75147928994-264.751479289941
13815221717.75147928994-195.751479289941
13914601717.75147928994-257.751479289941
14015521717.75147928994-165.751479289941
14115481717.75147928994-169.751479289941
14218271717.75147928994109.248520710059
14317371717.7514792899419.2485207100591
14419411717.75147928994223.248520710059
14514741717.75147928994-243.751479289941
14614581717.75147928994-259.751479289941
14715421717.75147928994-175.751479289941
14814041717.75147928994-313.751479289941
14915221717.75147928994-195.751479289941
15013851717.75147928994-332.751479289941
15116411717.75147928994-76.7514792899409
15215101717.75147928994-207.751479289941
15316811717.75147928994-36.7514792899409
15419381717.75147928994220.248520710059
15518681717.75147928994150.248520710059
15617261717.751479289948.24852071005914
15714561717.75147928994-261.751479289941
15814451717.75147928994-272.751479289941
15914561717.75147928994-261.751479289941
16013651717.75147928994-352.751479289941
16114871717.75147928994-230.751479289941
16215581717.75147928994-159.751479289941
16314881717.75147928994-229.751479289941
16416841717.75147928994-33.7514792899409
16515941717.75147928994-123.751479289941
16618501717.75147928994132.248520710059
16719981717.75147928994280.248520710059
16820791717.75147928994361.248520710059
16914941717.75147928994-223.751479289941
17010571321.69565217391-264.695652173913
17112181321.69565217391-103.695652173913
17211681321.69565217391-153.695652173913
17312361321.69565217391-85.695652173913
17410761321.69565217391-245.695652173913
17511741321.69565217391-147.695652173913
17611391321.69565217391-182.695652173913
17714271321.69565217391105.304347826087
17814871321.69565217391165.304347826087
17914831321.69565217391161.304347826087
18015131321.69565217391191.304347826087
18113571321.6956521739135.3043478260869
18211651321.69565217391-156.695652173913
18312821321.69565217391-39.6956521739131
18411101321.69565217391-211.695652173913
18512971321.69565217391-24.6956521739131
18611851321.69565217391-136.695652173913
18712221321.69565217391-99.695652173913
18812841321.69565217391-37.6956521739131
18914441321.69565217391122.304347826087
19015751321.69565217391253.304347826087
19117371321.69565217391415.304347826087
19217631321.69565217391441.304347826087
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/1wlai1195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/1wlai1195224193.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/2z9ku1195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/2z9ku1195224193.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/302p91195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/302p91195224193.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/4m7nd1195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/4m7nd1195224193.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/54rsv1195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/54rsv1195224193.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/6ci6v1195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/6ci6v1195224193.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/7a15f1195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/7a15f1195224193.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/8j2161195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/8j2161195224193.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/9w5b51195224193.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t1195223948kusiqrwokekmskp/9w5b51195224193.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by