Home » date » 2007 » Nov » 16 » attachments

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Fri, 16 Nov 2007 06:56:08 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv.htm/, Retrieved Fri, 16 Nov 2007 14:52:52 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
102,3 0 105,8 0 106,7 0 109,6 0 111,9 0 113,3 0 114,6 0 115,7 0 117,3 0 119,8 0 120,6 0 121,4 0 123,5 0 125,2 0 126 0 126,8 0 128,1 0 128,2 0 129,3 0 130,6 0 131,4 0 131,1 0 131,2 0 131,2 0 131,5 0 133,5 0 133,7 0 133,5 0 134 0 135,9 0 135,9 0 137,2 0 138,4 0 140,9 0 143 0 144,1 0 146,8 0 149,1 0 149,6 0 151,2 0 153,3 0 156,9 0 157,2 0 158,5 0 160 0 162,5 0 162,9 0 164,7 0 165 0 167,2 0 168,6 0 169,5 0 169,8 0 171,9 0 172 0 173,7 0 173,9 0 175,9 0 175,6 0 176,1 0 176,3 0 179,4 0 179,7 0 179,9 0 180,4 0 182,5 0 183,6 0 183,9 0 184,5 0 187,6 0 188 0 188,5 0 188,6 0 191,9 0 193,5 0 194,9 0 194,9 0 196,2 0 196,2 0 198 0 198,6 0 201,3 0 203,5 0 204,1 0 204,8 1 206,5 1 207,8 1 208,6 1 209,7 1 210 1 211,7 1 212,4 1 213,7 1 214,8 1 216,4 1 217,5 1 218,6 1 220,4 1 221,8 1 222,5 1 223,4 1 225,5 1 226,5 1 227,8 1 228,5 1 229,1 1 229,9 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 155.132142857143 + 62.6026397515528X[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)155.1321428571432.81543855.100500
X62.60263975155286.07258910.309100


Multiple Linear Regression - Regression Statistics
Multiple R0.709239800503977
R-squared0.503021094618921
Adjusted R-squared0.49828796218672
F-TEST (value)106.276573035805
F-TEST (DF numerator)1
F-TEST (DF denominator)105
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation25.8039117352387
Sum Squared Residuals69913.3953881989


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1102.3155.132142857144-52.8321428571437
2105.8155.132142857143-49.332142857143
3106.7155.132142857143-48.4321428571428
4109.6155.132142857143-45.5321428571429
5111.9155.132142857143-43.2321428571428
6113.3155.132142857143-41.8321428571429
7114.6155.132142857143-40.5321428571429
8115.7155.132142857143-39.4321428571428
9117.3155.132142857143-37.8321428571429
10119.8155.132142857143-35.3321428571428
11120.6155.132142857143-34.5321428571429
12121.4155.132142857143-33.7321428571428
13123.5155.132142857143-31.6321428571428
14125.2155.132142857143-29.9321428571428
15126155.132142857143-29.1321428571428
16126.8155.132142857143-28.3321428571429
17128.1155.132142857143-27.0321428571429
18128.2155.132142857143-26.9321428571429
19129.3155.132142857143-25.8321428571428
20130.6155.132142857143-24.5321428571429
21131.4155.132142857143-23.7321428571428
22131.1155.132142857143-24.0321428571429
23131.2155.132142857143-23.9321428571429
24131.2155.132142857143-23.9321428571429
25131.5155.132142857143-23.6321428571428
26133.5155.132142857143-21.6321428571429
27133.7155.132142857143-21.4321428571429
28133.5155.132142857143-21.6321428571429
29134155.132142857143-21.1321428571429
30135.9155.132142857143-19.2321428571428
31135.9155.132142857143-19.2321428571428
32137.2155.132142857143-17.9321428571429
33138.4155.132142857143-16.7321428571428
34140.9155.132142857143-14.2321428571428
35143155.132142857143-12.1321428571428
36144.1155.132142857143-11.0321428571429
37146.8155.132142857143-8.33214285714284
38149.1155.132142857143-6.03214285714286
39149.6155.132142857143-5.53214285714286
40151.2155.132142857143-3.93214285714286
41153.3155.132142857143-1.83214285714284
42156.9155.1321428571431.76785714285716
43157.2155.1321428571432.06785714285714
44158.5155.1321428571433.36785714285715
45160155.1321428571434.86785714285715
46162.5155.1321428571437.36785714285715
47162.9155.1321428571437.76785714285716
48164.7155.1321428571439.56785714285714
49165155.1321428571439.86785714285715
50167.2155.13214285714312.0678571428571
51168.6155.13214285714313.4678571428571
52169.5155.13214285714314.3678571428572
53169.8155.13214285714314.6678571428572
54171.9155.13214285714316.7678571428572
55172155.13214285714316.8678571428572
56173.7155.13214285714318.5678571428571
57173.9155.13214285714318.7678571428572
58175.9155.13214285714320.7678571428572
59175.6155.13214285714320.4678571428571
60176.1155.13214285714320.9678571428571
61176.3155.13214285714321.1678571428572
62179.4155.13214285714324.2678571428572
63179.7155.13214285714324.5678571428571
64179.9155.13214285714324.7678571428572
65180.4155.13214285714325.2678571428572
66182.5155.13214285714327.3678571428571
67183.6155.13214285714328.4678571428571
68183.9155.13214285714328.7678571428572
69184.5155.13214285714329.3678571428571
70187.6155.13214285714332.4678571428571
71188155.13214285714332.8678571428571
72188.5155.13214285714333.3678571428571
73188.6155.13214285714333.4678571428571
74191.9155.13214285714336.7678571428572
75193.5155.13214285714338.3678571428571
76194.9155.13214285714339.7678571428572
77194.9155.13214285714339.7678571428572
78196.2155.13214285714341.0678571428571
79196.2155.13214285714341.0678571428571
80198155.13214285714342.8678571428571
81198.6155.13214285714343.4678571428571
82201.3155.13214285714346.1678571428572
83203.5155.13214285714348.3678571428571
84204.1155.13214285714348.9678571428571
85204.8217.734782608696-12.9347826086956
86206.5217.734782608696-11.2347826086957
87207.8217.734782608696-9.93478260869565
88208.6217.734782608696-9.13478260869566
89209.7217.734782608696-8.03478260869567
90210217.734782608696-7.73478260869566
91211.7217.734782608696-6.03478260869567
92212.4217.734782608696-5.33478260869565
93213.7217.734782608696-4.03478260869567
94214.8217.734782608696-2.93478260869565
95216.4217.734782608696-1.33478260869565
96217.5217.734782608696-0.234782608695657
97218.6217.7347826086960.865217391304337
98220.4217.7347826086962.66521739130435
99221.8217.7347826086964.06521739130435
100222.5217.7347826086964.76521739130434
101223.4217.7347826086965.66521739130435
102225.5217.7347826086967.76521739130434
103226.5217.7347826086968.76521739130434
104227.8217.73478260869610.0652173913044
105228.5217.73478260869610.7652173913043
106229.1217.73478260869611.3652173913043
107229.9217.73478260869612.1652173913043
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/1obyd1195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/1obyd1195221363.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/22i461195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/22i461195221363.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/3ml4g1195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/3ml4g1195221363.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/4tmzu1195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/4tmzu1195221363.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/58g901195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/58g901195221363.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/63ro71195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/63ro71195221363.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/7npvh1195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/7npvh1195221363.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/8c2ke1195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/8c2ke1195221363.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/9e0jv1195221363.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/16/t119522116200xlituqm1o85lv/9e0jv1195221363.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by