Home » date » 2007 » Nov » 15 » attachments

Workshop6-q3b

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 15:22:14 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5.htm/, Retrieved Thu, 15 Nov 2007 23:17:04 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
36409 0 33163 0 34122 0 35225 0 28249 0 30374 0 26311 0 22069 0 23651 0 28628 0 23187 0 14727 0 43080 0 32519 0 39657 0 33614 0 28671 0 34243 0 27336 0 22916 0 24537 0 26128 0 22602 0 15744 0 41086 0 39690 0 43129 0 37863 0 35953 0 29133 0 24693 0 22205 0 21725 0 27192 0 21790 0 13253 0 37702 0 30364 0 32609 0 30212 0 29965 0 28352 0 25814 0 22414 0 20506 0 28806 0 22228 0 13971 0 36845 0 35338 0 35022 0 34777 0 26887 0 23970 0 22780 0 17351 0 21382 0 24561 0 17409 0 11514 0 31514 0 27071 0 29462 0 26105 0 22397 0 23843 0 21705 0 18089 0 20764 0 25316 0 17704 0 15548 0 28029 0 29383 0 36438 0 32034 0 22679 0 24319 0 18004 0 17537 0 20366 0 22782 0 19169 0 13807 0 29743 0 25591 0 29096 1 26482 1 22405 1 27044 1 17970 1 18730 1 19684 1 19785 1 18479 1 10698 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Inschr_pw[t] = + 14166.525 -4070.19999999997Olieprijzen[t] + 21384.475M1[t] + 17473.3500000000M2[t] + 21284.1250000000M3[t] + 18381.2500M4[t] + 13493M5[t] + 14002M6[t] + 9418.875M7[t] + 6506.12500000001M8[t] + 7919.125M9[t] + 11742M10[t] + 6663.25M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)14166.5251245.26540911.376300
Olieprijzen-4070.199999999971182.286517-3.44270.0009050.000452
M121384.4751754.85931912.185900
M217473.35000000001754.8593199.957100
M321284.12500000001748.6253412.171900
M418381.25001748.6253410.511800
M5134931748.625347.716300
M6140021748.625348.007400
M79418.8751748.625345.38641e-060
M86506.125000000011748.625343.72070.000360.00018
M97919.1251748.625344.52882e-051e-05
M10117421748.625346.71500
M116663.251748.625343.81060.0002650.000133


Multiple Linear Regression - Regression Statistics
Multiple R0.894616415750474
R-squared0.800338531330225
Adjusted R-squared0.77147181296833
F-TEST (value)27.7253036280942
F-TEST (DF numerator)12
F-TEST (DF denominator)83
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation3497.25068097819
Sum Squared Residuals1015153273.025


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
13640935551858.000000000023
23316331639.87500000011523.12499999994
33412235450.65-1328.65000000003
43522532547.77500000012677.22499999994
52824927659.5250000000589.475000000051
63037428168.5252205.47500000001
72631123585.42725.59999999999
82206920672.65000000001396.35000000002
92365122085.651565.35000000000
102862825908.5252719.475
112318720829.7752357.225
121472714166.525560.474999999998
1343080355517528.99999999999
143251931639.875879.125000000004
153965735450.654206.35000000000
163361432547.7751066.22500000001
172867127659.5251011.47499999999
183424328168.5256074.475
192733623585.43750.6
202291620672.652243.35000000000
212453722085.652451.35
222612825908.525219.475000000001
232260220829.7751772.225
241574414166.5251577.47500000000
2541086355515535
263969031639.8758050.12500000001
274312935450.657678.35
283786332547.7755315.22500000001
293595327659.5258293.475
302913328168.525964.474999999999
312469323585.41107.6
322220520672.651532.35000000000
332172522085.65-360.649999999999
342719225908.5251283.475
352179020829.775960.225
361325314166.525-913.524999999998
3737702355512151.00000000000
383036431639.875-1275.87499999999
393260935450.65-2841.65
403021232547.775-2335.77499999999
412996527659.5252305.47499999999
422835228168.525183.474999999999
432581423585.42228.6
442241420672.651741.35000000000
452050622085.65-1579.65
462880625908.5252897.475
472222820829.7751398.225
481397114166.525-195.524999999998
4936845355511294.00000000000
503533831639.8753698.12500000000
513502235450.65-428.649999999996
523477732547.7752229.22500000001
532688727659.525-772.525000000006
542397028168.525-4198.525
552278023585.4-805.4
561735120672.65-3321.65000000000
572138222085.65-703.65
582456125908.525-1347.525
591740920829.775-3420.775
601151414166.525-2652.52500000000
613151435551-4037
622707131639.875-4568.875
632946235450.65-5988.65
642610532547.775-6442.77499999999
652239727659.525-5262.52500000001
662384328168.525-4325.525
672170523585.4-1880.4
681808920672.65-2583.65000000000
692076422085.65-1321.65
702531625908.525-592.525
711770420829.775-3125.775
721554814166.5251381.47500000000
732802935551-7522
742938331639.875-2256.87500000000
753643835450.65987.350000000004
763203432547.775-513.774999999992
772267927659.525-4980.52500000001
782431928168.525-3849.525
791800423585.4-5581.4
801753720672.65-3135.65000000000
812036622085.65-1719.65
822278225908.525-3126.525
831916920829.775-1660.775
841380714166.525-359.524999999998
852974335551-5808
862559131639.875-6048.875
872909631380.45-2284.45000000000
882648228477.575-1995.57499999999
892240523589.325-1184.32500000001
902704424098.3252945.675
911797019515.2-1545.20000000000
921873016602.452127.54999999999
931968418015.451668.55
941978521838.325-2053.325
951847916759.5751719.425
961069810096.325601.675000000003
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/1g89s1195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/1g89s1195165329.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/2mx8p1195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/2mx8p1195165329.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/3ktth1195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/3ktth1195165329.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/4k1hf1195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/4k1hf1195165329.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/51yxh1195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/51yxh1195165329.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/6oyc81195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/6oyc81195165329.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/7qz7g1195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/7qz7g1195165329.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/8yiip1195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/8yiip1195165329.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/9imxa1195165329.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195165014nfe598k8ikthcr5/9imxa1195165329.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by