Home » date » 2007 » Nov » 15 » attachments

Workshop6-Q3a

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 15:14:23 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8.htm/, Retrieved Thu, 15 Nov 2007 23:09:10 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
36409 0 33163 0 34122 0 35225 0 28249 0 30374 0 26311 0 22069 0 23651 0 28628 0 23187 0 14727 0 43080 0 32519 0 39657 0 33614 0 28671 0 34243 0 27336 0 22916 0 24537 0 26128 0 22602 0 15744 0 41086 0 39690 0 43129 0 37863 0 35953 0 29133 0 24693 0 22205 0 21725 0 27192 0 21790 0 13253 0 37702 0 30364 0 32609 0 30212 0 29965 0 28352 0 25814 0 22414 0 20506 0 28806 0 22228 0 13971 0 36845 0 35338 0 35022 0 34777 0 26887 0 23970 0 22780 0 17351 0 21382 0 24561 0 17409 0 11514 0 31514 0 27071 0 29462 0 26105 0 22397 0 23843 0 21705 0 18089 0 20764 0 25316 0 17704 0 15548 0 28029 0 29383 0 36438 0 32034 0 22679 0 24319 0 18004 0 17537 0 20366 0 22782 0 19169 0 13807 0 29743 0 25591 0 29096 1 26482 1 22405 1 27044 1 17970 1 18730 1 19684 1 19785 1 18479 1 10698 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Inschr_pw[t] = + 26686.6511627907 -5649.3511627907Olieprijzen[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)26686.6511627907770.43862434.638300
Olieprijzen-5649.35116279072387.116768-2.36660.0200040.010002


Multiple Linear Regression - Regression Statistics
Multiple R0.237133822191584
R-squared0.0562324496271897
Adjusted R-squared0.0461923693040746
F-TEST (value)5.60079678822163
F-TEST (DF numerator)1
F-TEST (DF denominator)94
p-value0.0200037728180864
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation7144.75387336817
Sum Squared Residuals4798465743.63488


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
13640926686.65116279079722.34883720935
23316326686.65116279076476.3488372093
33412226686.65116279077435.3488372093
43522526686.65116279078538.3488372093
52824926686.65116279071562.34883720930
63037426686.65116279073687.3488372093
72631126686.6511627907-375.651162790698
82206926686.6511627907-4617.6511627907
92365126686.6511627907-3035.6511627907
102862826686.65116279071941.34883720930
112318726686.6511627907-3499.6511627907
121472726686.6511627907-11959.6511627907
134308026686.651162790716393.3488372093
143251926686.65116279075832.3488372093
153965726686.651162790712970.3488372093
163361426686.65116279076927.3488372093
172867126686.65116279071984.3488372093
183424326686.65116279077556.3488372093
192733626686.6511627907649.348837209302
202291626686.6511627907-3770.6511627907
212453726686.6511627907-2149.65116279070
222612826686.6511627907-558.651162790698
232260226686.6511627907-4084.6511627907
241574426686.6511627907-10942.6511627907
254108626686.651162790714399.3488372093
263969026686.651162790713003.3488372093
274312926686.651162790716442.3488372093
283786326686.651162790711176.3488372093
293595326686.65116279079266.3488372093
302913326686.65116279072446.3488372093
312469326686.6511627907-1993.6511627907
322220526686.6511627907-4481.6511627907
332172526686.6511627907-4961.6511627907
342719226686.6511627907505.348837209302
352179026686.6511627907-4896.6511627907
361325326686.6511627907-13433.6511627907
373770226686.651162790711015.3488372093
383036426686.65116279073677.3488372093
393260926686.65116279075922.3488372093
403021226686.65116279073525.3488372093
412996526686.65116279073278.3488372093
422835226686.65116279071665.34883720930
432581426686.6511627907-872.651162790698
442241426686.6511627907-4272.6511627907
452050626686.6511627907-6180.6511627907
462880626686.65116279072119.3488372093
472222826686.6511627907-4458.6511627907
481397126686.6511627907-12715.6511627907
493684526686.651162790710158.3488372093
503533826686.65116279078651.3488372093
513502226686.65116279078335.3488372093
523477726686.65116279078090.3488372093
532688726686.6511627907200.348837209302
542397026686.6511627907-2716.6511627907
552278026686.6511627907-3906.6511627907
561735126686.6511627907-9335.6511627907
572138226686.6511627907-5304.6511627907
582456126686.6511627907-2125.65116279070
591740926686.6511627907-9277.6511627907
601151426686.6511627907-15172.6511627907
613151426686.65116279074827.3488372093
622707126686.6511627907384.348837209302
632946226686.65116279072775.3488372093
642610526686.6511627907-581.651162790698
652239726686.6511627907-4289.6511627907
662384326686.6511627907-2843.6511627907
672170526686.6511627907-4981.6511627907
681808926686.6511627907-8597.6511627907
692076426686.6511627907-5922.6511627907
702531626686.6511627907-1370.65116279070
711770426686.6511627907-8982.6511627907
721554826686.6511627907-11138.6511627907
732802926686.65116279071342.34883720930
742938326686.65116279072696.3488372093
753643826686.65116279079751.3488372093
763203426686.65116279075347.3488372093
772267926686.6511627907-4007.6511627907
782431926686.6511627907-2367.6511627907
791800426686.6511627907-8682.6511627907
801753726686.6511627907-9149.6511627907
812036626686.6511627907-6320.6511627907
822278226686.6511627907-3904.6511627907
831916926686.6511627907-7517.6511627907
841380726686.6511627907-12879.6511627907
852974326686.65116279073056.3488372093
862559126686.6511627907-1095.65116279070
872909621037.38058.7
882648221037.35444.7
892240521037.31367.7
902704421037.36006.7
911797021037.3-3067.3
921873021037.3-2307.3
931968421037.3-1353.3
941978521037.3-1252.3
951847921037.3-2558.3
961069821037.3-10339.3
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/17y561195164856.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/17y561195164856.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/2o0r91195164856.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/2o0r91195164856.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/3mlz71195164856.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/3mlz71195164856.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/4ig0d1195164856.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/4ig0d1195164856.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/56hyz1195164856.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/56hyz1195164856.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/6e9om1195164856.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/6e9om1195164856.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/7fbug1195164856.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/7fbug1195164856.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/875ca1195164857.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/875ca1195164857.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/99idd1195164857.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164540cxqilqgn6z2svn8/99idd1195164857.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by