Home » date » 2007 » Nov » 15 » attachments

Workshop6-q3a

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 15:08:49 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0.htm/, Retrieved Thu, 15 Nov 2007 23:05:32 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
36.409 0 33.163 0 34.122 0 35.225 0 28.249 0 30.374 0 26.311 0 22.069 0 23.651 0 28.628 0 23.187 0 14.727 0 43.080 0 32.519 0 39.657 0 33.614 0 28.671 0 34.243 0 27.336 0 22.916 0 24.537 0 26.128 0 22.602 0 15.744 0 41.086 0 39.690 0 43.129 0 37.863 0 35.953 0 29.133 0 24.693 0 22.205 0 21.725 0 27.192 0 21.790 0 13.253 0 37.702 0 30.364 0 32.609 0 30.212 0 29.965 0 28.352 0 25.814 0 22.414 0 20.506 0 28.806 0 22.228 0 13.971 0 36.845 0 35.338 0 35.022 0 34.777 0 26.887 0 23.970 0 22.780 0 17.351 0 21.382 0 24.561 0 17.409 0 11.514 0 31.514 0 27.071 0 29.462 0 26.105 0 22.397 0 23.843 0 21.705 0 18.089 0 20.764 0 25.316 0 17.704 0 15.548 0 28.029 0 29.383 0 36.438 0 32.034 0 22.679 0 24.319 0 18.004 0 17.537 0 20.366 0 22.782 0 19.169 0 13.807 0 29.743 0 25.591 0 29.096 1 26.482 1 22.405 1 27.044 1 17.970 1 18.730 1 19.684 1 19.785 1 18.479 1 10.698 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
Inschr_pw[t] = + 26.6866511627907 -5.6493511627907Olieprijzen[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)26.68665116279070.77043934.638300
Olieprijzen-5.64935116279072.387117-2.36660.0200040.010002


Multiple Linear Regression - Regression Statistics
Multiple R0.237133822191584
R-squared0.0562324496271896
Adjusted R-squared0.0461923693040746
F-TEST (value)5.60079678822162
F-TEST (DF numerator)1
F-TEST (DF denominator)94
p-value0.0200037728180864
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation7.14475387336817
Sum Squared Residuals4798.46574363488


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
136.40926.68665116279069.72234883720936
233.16326.68665116279076.4763488372093
334.12226.68665116279077.4353488372093
435.22526.68665116279078.5383488372093
528.24926.68665116279071.5623488372093
630.37426.68665116279073.6873488372093
726.31126.6866511627907-0.375651162790698
822.06926.6866511627907-4.6176511627907
923.65126.6866511627907-3.0356511627907
1028.62826.68665116279071.94134883720930
1123.18726.6866511627907-3.4996511627907
1214.72726.6866511627907-11.9596511627907
1343.0826.686651162790716.3933488372093
1432.51926.68665116279075.8323488372093
1539.65726.686651162790712.9703488372093
1633.61426.68665116279076.9273488372093
1728.67126.68665116279071.9843488372093
1834.24326.68665116279077.5563488372093
1927.33626.68665116279070.649348837209301
2022.91626.6866511627907-3.7706511627907
2124.53726.6866511627907-2.1496511627907
2226.12826.6866511627907-0.558651162790697
2322.60226.6866511627907-4.0846511627907
2415.74426.6866511627907-10.9426511627907
2541.08626.686651162790714.3993488372093
2639.6926.686651162790713.0033488372093
2743.12926.686651162790716.4423488372093
2837.86326.686651162790711.1763488372093
2935.95326.68665116279079.2663488372093
3029.13326.68665116279072.4463488372093
3124.69326.6866511627907-1.99365116279070
3222.20526.6866511627907-4.4816511627907
3321.72526.6866511627907-4.9616511627907
3427.19226.68665116279070.505348837209302
3521.7926.6866511627907-4.8966511627907
3613.25326.6866511627907-13.4336511627907
3737.70226.686651162790711.0153488372093
3830.36426.68665116279073.6773488372093
3932.60926.68665116279075.9223488372093
4030.21226.68665116279073.5253488372093
4129.96526.68665116279073.2783488372093
4228.35226.68665116279071.66534883720930
4325.81426.6866511627907-0.872651162790698
4422.41426.6866511627907-4.2726511627907
4520.50626.6866511627907-6.1806511627907
4628.80626.68665116279072.11934883720930
4722.22826.6866511627907-4.4586511627907
4813.97126.6866511627907-12.7156511627907
4936.84526.686651162790710.1583488372093
5035.33826.68665116279078.6513488372093
5135.02226.68665116279078.3353488372093
5234.77726.68665116279078.0903488372093
5326.88726.68665116279070.200348837209303
5423.9726.6866511627907-2.7166511627907
5522.7826.6866511627907-3.9066511627907
5617.35126.6866511627907-9.3356511627907
5721.38226.6866511627907-5.3046511627907
5824.56126.6866511627907-2.12565116279070
5917.40926.6866511627907-9.2776511627907
6011.51426.6866511627907-15.1726511627907
6131.51426.68665116279074.8273488372093
6227.07126.68665116279070.384348837209304
6329.46226.68665116279072.7753488372093
6426.10526.6866511627907-0.581651162790697
6522.39726.6866511627907-4.2896511627907
6623.84326.6866511627907-2.8436511627907
6721.70526.6866511627907-4.9816511627907
6818.08926.6866511627907-8.5976511627907
6920.76426.6866511627907-5.9226511627907
7025.31626.6866511627907-1.3706511627907
7117.70426.6866511627907-8.9826511627907
7215.54826.6866511627907-11.1386511627907
7328.02926.68665116279071.34234883720930
7429.38326.68665116279072.6963488372093
7536.43826.68665116279079.7513488372093
7632.03426.68665116279075.3473488372093
7722.67926.6866511627907-4.0076511627907
7824.31926.6866511627907-2.3676511627907
7918.00426.6866511627907-8.6826511627907
8017.53726.6866511627907-9.1496511627907
8120.36626.6866511627907-6.3206511627907
8222.78226.6866511627907-3.9046511627907
8319.16926.6866511627907-7.5176511627907
8413.80726.6866511627907-12.8796511627907
8529.74326.68665116279073.0563488372093
8625.59126.6866511627907-1.09565116279070
8729.09621.03738.0587
8826.48221.03735.4447
8922.40521.03731.3677
9027.04421.03736.0067
9117.9721.0373-3.0673
9218.7321.0373-2.3073
9319.68421.0373-1.3533
9419.78521.0373-1.2523
9518.47921.0373-2.5583
9610.69821.0373-10.3393
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/10e7x1195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/10e7x1195164516.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/24wej1195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/24wej1195164516.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/3o3x81195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/3o3x81195164516.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/4xnud1195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/4xnud1195164516.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/5dwyq1195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/5dwyq1195164516.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/60avc1195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/60avc1195164516.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/71bhk1195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/71bhk1195164516.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/8vlcb1195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/8vlcb1195164516.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/9ddpd1195164516.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195164328v4oyw0ha245lju0/9ddpd1195164516.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by