Home » date » 2007 » Nov » 15 » attachments

Case: the seatbelt law

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 09:41:55 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar.htm/, Retrieved Thu, 15 Nov 2007 17:37:45 +0100
 
User-defined keywords:
Q3
 
Dataseries X:
» Textbox « » Textfile « » CSV «
513 0 503 0 471 0 471 0 476 0 475 0 470 0 461 0 455 0 456 0 517 0 525 0 523 0 519 0 509 0 512 0 519 0 517 0 510 0 509 0 501 0 507 0 569 0 580 0 578 0 565 0 547 0 555 0 562 0 561 0 555 0 544 0 537 0 543 0 594 0 611 0 613 0 611 0 594 0 595 0 591 1 589 1 584 1 573 1 567 1 569 1 621 1 629 1 628 1 612 1 595 1 597 1 593 1 590 1 580 1 574 1 573 1 573 1 620 1 626 1 620 1 588 1 566 1 557 1 561 1 549 1 532 1 526 1 511 1 499 1 555 1 565 1 542 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001


Multiple Linear Regression - Estimated Regression Equation
y[t] = + 533.950757575758 + 0.462121212121239`x `[t] -8.87752525252522M1[t] -9.79166666666669M2[t] -30.4381313131313M3[t] -30.9179292929293M4[t] -29.8080808080808M5[t] -34.6212121212121M6[t] -44.2676767676768M7[t] -52.9141414141414M8[t] -61.3939393939394M9[t] -62.2070707070707M10[t] -8.6868686868687M11[t] + 1.31313131313131t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)533.95075757575817.09106931.241500
`x `0.46212121212123916.1115840.02870.9772150.488607
M1-8.8775252525252219.023756-0.46670.6424660.321233
M2-9.7916666666666919.812262-0.49420.6229840.311492
M3-30.438131313131319.78737-1.53830.1293310.064666
M4-30.917929292929319.769774-1.56390.123190.061595
M5-29.808080808080819.889394-1.49870.1392850.069643
M6-34.621212121212119.842009-1.74480.0862190.043109
M7-44.267676767676819.801826-2.23550.029180.01459
M8-52.914141414141419.768888-2.67660.0096130.004807
M9-61.393939393939419.743231-3.10960.0028830.001442
M10-62.207070707070719.724885-3.15370.0025350.001268
M11-8.686868686868719.713869-0.44060.6610790.330539
t1.313131313131310.3805523.45060.001040.00052


Multiple Linear Regression - Regression Statistics
Multiple R0.746082785022105
R-squared0.55663952210634
Adjusted R-squared0.458949925282314
F-TEST (value)5.69804298720819
F-TEST (DF numerator)13
F-TEST (DF denominator)59
p-value1.30832598277397e-06
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation34.1390595870493
Sum Squared Residuals68763.047979798


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1513526.386363636363-13.3863636363634
2503526.785353535354-23.7853535353536
3471507.45202020202-36.4520202020202
4471508.285353535354-37.2853535353536
5476510.708333333333-34.7083333333334
6475507.208333333333-32.2083333333333
7470498.875-28.875
8461491.541666666667-30.5416666666667
9455484.375-29.375
10456484.875-28.875
11517539.708333333333-22.7083333333334
12525549.708333333333-24.7083333333334
13523542.14393939394-19.1439393939395
14519542.542929292929-23.5429292929293
15509523.209595959596-14.2095959595960
16512524.042929292929-12.0429292929293
17519526.465909090909-7.4659090909091
18517522.965909090909-5.9659090909091
19510514.632575757576-4.63257575757576
20509507.2992424242421.70075757575758
21501500.1325757575760.86742424242424
22507500.6325757575766.36742424242424
23569555.46590909090913.5340909090909
24580565.46590909090914.5340909090909
25578557.90151515151520.0984848484848
26565558.3005050505056.69949494949496
27547538.9671717171728.0328282828283
28555539.80050505050515.1994949494950
29562542.22348484848519.7765151515152
30561538.72348484848522.2765151515152
31555530.39015151515224.6098484848485
32544523.05681818181820.9431818181818
33537515.89015151515221.1098484848485
34543516.39015151515226.6098484848485
35594571.22348484848522.7765151515151
36611581.22348484848529.7765151515152
37613573.65909090909139.3409090909091
38611574.05808080808136.9419191919192
39594554.72474747474739.2752525252525
40595555.55808080808139.4419191919192
41591558.44318181818232.5568181818182
42589554.94318181818234.0568181818182
43584546.60984848484837.3901515151515
44573539.27651515151533.7234848484848
45567532.10984848484834.8901515151515
46569532.60984848484836.3901515151515
47621587.44318181818233.5568181818182
48629597.44318181818231.5568181818182
49628589.87878787878838.1212121212121
50612590.27777777777821.7222222222222
51595570.94444444444424.0555555555556
52597571.77777777777825.2222222222222
53593574.20075757575818.7992424242424
54590570.70075757575819.2992424242424
55580562.36742424242417.6325757575758
56574555.03409090909118.9659090909091
57573547.86742424242425.1325757575758
58573548.36742424242424.6325757575758
59620603.20075757575816.7992424242424
60626613.20075757575812.7992424242424
61620605.63636363636414.3636363636363
62588606.035353535354-18.0353535353535
63566586.70202020202-20.7020202020202
64557587.535353535354-30.5353535353535
65561589.958333333333-28.9583333333333
66549586.458333333333-37.4583333333333
67532578.125-46.125
68526570.791666666667-44.7916666666666
69511563.625-52.625
70499564.125-65.125
71555618.958333333333-63.9583333333333
72565628.958333333333-63.9583333333333
73542621.39393939394-79.3939393939395
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/16wiu1195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/16wiu1195144904.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/2b84h1195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/2b84h1195144904.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/333zh1195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/333zh1195144904.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/4b98j1195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/4b98j1195144904.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/5zxb11195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/5zxb11195144904.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/64hxc1195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/64hxc1195144904.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/7t9pi1195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/7t9pi1195144904.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/8b6ey1195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/8b6ey1195144904.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/9w5dx1195144904.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195144665824rrcy0wno4oar/9w5dx1195144904.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by