Home » date » 2007 » Nov » 15 » attachments

multiple regression (trend)

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 08:42:40 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl.htm/, Retrieved Thu, 15 Nov 2007 16:37:18 +0100
 
User-defined keywords:
W9Q3G7
 
Dataseries X:
» Textbox « » Textfile « » CSV «
140 1 132 0 117 0 114 1 113 1 110 1 107 0 103 0 98 0 98 1 137 1 148 0 147 0 139 1 130 0 128 1 127 1 123 1 118 0 114 1 108 0 111 1 151 1 159 1 158 0 148 0 138 0 137 1 136 1 133 1 126 1 120 0 114 0 116 1 153 1 162 1 161 1 149 1 139 0 135 1 130 1 127 1 122 0 117 0 112 0 113 1 149 1 157 1 157 0 147 0 137 0 132 1 125 1 123 0 117 0 114 0 111 1 112 0 144 1 150 1 149 0 134 0 123 0 116 0 117 1 111 0 105 0 102 0 95 0 93 0 124 1 130 1 124 0
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Y[t] = + 146.931317512971 + 5.83579994896655X[t] + 0.101213765254304M1[t] -6.77126291530474M2[t] -15.6404133100038M3[t] -24.1513303118304M4[t] -27.4383806810127M5[t] -28.9741977423784M6[t] -31.3707148122497M7[t] -35.5184651899375M8[t] -40.832882234292M9[t] -42.8985325864632M10[t] -8.99154961380658M11[t] -0.0189162889788047t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)146.9313175129715.48820626.772200
X5.835799948966553.1480621.85380.0687730.034386
M10.1012137652543045.5283520.01830.9854550.492727
M2-6.771262915304745.709779-1.18590.2404130.120207
M3-15.64041331000386.097814-2.56490.0128830.006442
M4-24.15133031183045.435809-4.4434e-052e-05
M5-27.43838068101275.446938-5.03745e-062e-06
M6-28.97419774237845.461967-5.30472e-061e-06
M7-31.37071481224975.843621-5.36841e-061e-06
M8-35.51846518993755.835969-6.086100
M9-40.8328822342925.82882-7.005300
M10-42.89853258646325.44746-7.87500
M11-8.991549613806585.442336-1.65210.1038170.051908
t-0.01891628897880470.054725-0.34570.7308270.365414


Multiple Linear Regression - Regression Statistics
Multiple R0.875657079533982
R-squared0.766775320937982
Adjusted R-squared0.715386832331097
F-TEST (value)14.9211494971900
F-TEST (DF numerator)13
F-TEST (DF denominator)59
p-value4.08562073062058e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9.38451061286577
Sum Squared Residuals5196.07332713642


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1140152.849414938213-12.8494149382133
2132140.122222019709-8.12222201970856
3117131.234155336031-14.2341553360308
4114128.540121994192-14.5401219941919
5113125.234155336031-12.2341553360308
6110123.679421985686-13.6794219856863
7107115.428188677870-8.42818867786978
8103111.261522011203-8.26152201120301
998105.928188677870-7.92818867786968
1098109.679421985686-11.6794219856864
11137143.567488669364-6.56748866936416
12148146.7043220452251.29567795477467
13147146.7866195215010.213380478499176
14139145.731026500930-6.73102650092954
15130131.007159868285-1.00715986828514
16128128.313126526446-0.313126526446249
17127125.0071598682851.99284013171485
18123123.452426517941-0.45242651794067
19118115.2011932101242.79880678987595
20114116.870326492424-2.87032649242395
21108105.7011932101242.29880678987594
22111109.4524265179411.54757348205935
23151143.3404932016187.65950679838152
24159152.3131265264466.68687347355375
25158146.55962405375511.4403759462448
26148139.6682310842178.3317689157827
27138130.7801644005397.21983559946051
28137128.0861310587018.9138689412994
29136124.78016440053911.2198355994605
30133123.2254310501959.774568949805
31126120.8099976913455.19000230865507
32120110.8075310757129.19246892428826
33114105.4741977423788.5258022576216
34116109.2254310501956.774568949805
35153143.1134977338739.88650226612718
36162152.0861310587019.91386894129941
37161152.1684285349768.83157146502393
38149145.2770355654383.72296443456178
39139130.5531689327948.44683106720616
40135127.8591355909557.14086440904506
41130124.5531689327945.44683106720616
42127122.9984355824494.00156441755064
43122114.7472022746337.25279772536727
44117110.5805356079666.41946439203391
45112105.2472022746336.75279772536725
46113108.9984355824494.00156441755065
47149142.8865022661276.11349773387283
48157151.8591355909555.14086440904506
49157146.10563311826410.8943668817361
50147139.2142401487267.785759851274
51137130.3261734650486.67382653495182
52132127.6321401232094.36785987679072
53125124.3261734650480.67382653495182
54123116.9356401657376.06435983426286
55117114.5202068068872.47979319311292
56114110.3535401402203.64645985977957
57111110.8560067558540.143993244146354
58112102.9356401657379.06435983426287
59144142.6595067983811.34049320161849
60150151.632140123209-1.63214012320928
61149145.8786376505183.1213623494818
62134138.987244680980-4.98724468098035
63123130.099177997303-7.09917799730252
64116121.569344706497-5.56934470649707
65117124.099177997303-7.09917799730252
66111116.708644697991-5.70864469799149
67105114.293211339141-9.29321133914142
68102110.126544672475-8.12654467247477
6995104.793211339141-9.79321133914144
7093102.708644697991-9.70864469799148
71124142.432511330636-18.4325113306359
72130151.405144655464-21.4051446554636
73124145.651642182773-21.6516421827725
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/16nde1195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/16nde1195141356.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/25q451195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/25q451195141356.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/32jut1195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/32jut1195141356.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/4ihjg1195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/4ihjg1195141356.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/5coqd1195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/5coqd1195141356.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/6aefs1195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/6aefs1195141356.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/79ced1195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/79ced1195141356.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/8kz211195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/8kz211195141356.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/9ewrl1195141356.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195141023b8e06nn5g4zxywl/9ewrl1195141356.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by