Home » date » 2007 » Nov » 15 » attachments

WS 8 - Q3 (2)

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 07:14:36 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1.htm/, Retrieved Thu, 15 Nov 2007 15:13:28 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
8.7 0 8.5 0 8.2 0 8.3 0 8 0 8.1 0 8.7 0 9.3 0 8.9 0 8.8 0 8.4 0 8.4 0 7.3 0 7.2 0 7 0 7 0 6.9 0 6.9 0 7.1 0 7.5 0 7.4 0 8.9 0 8.3 1 8.3 0 9 0 8.9 0 8.8 0 7.8 0 7.8 0 7.8 0 9.2 0 9.3 0 9.2 0 8.6 0 8.5 0 8.5 0 9 0 9 0 8.8 0 8 0 7.9 0 8.1 0 9.3 0 9.4 0 9.4 0 9.3 1 9 0 9.1 0 9.7 0 9.7 0 9.6 0 8.3 0 8.2 0 8.4 0 10.6 0 10.9 0 10.9 0 9.6 0 9.3 0 9.3 0 9.6 0 9.5 0 9.5 0 9 0 8.9 0 9 0 10.1 0 10.2 0 10.2 0 9.5 0 9.3 0 9.3 0 9.4 0 9.3 0 9.1 0 9 0 8.9 0 9 0 9.8 0 10 0 9.8 0 9.4 0 9 1 8.9 0 9.3 0 9.1 0 8.8 0 8.9 1 8.7 0 8.6 0 9.1 0 9.3 0 8.9 0
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Vrouw[t] = + 8.82857142857143 + 0.125988700564972x[t] + 0.171428571428568M1[t] + 0.0714285714285723M2[t] -0.103571428571428M3[t] -0.55682001614205M4[t] -0.666071428571428M5[t] -0.591071428571429M6[t] + 0.408928571428572M7[t] + 0.658928571428573M8[t] + 0.508928571428572M9[t] + 0.310573042776433M10[t] -0.0359967715899913M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)8.828571428571430.29344930.085500
x0.1259887005649720.4367070.28850.7737120.386856
M10.1714285714285680.4018220.42660.6707960.335398
M20.07142857142857230.4018220.17780.859360.42968
M3-0.1035714285714280.401822-0.25780.7972580.398629
M4-0.556820016142050.405513-1.37310.173550.086775
M5-0.6660714285714280.401822-1.65760.1013090.050655
M6-0.5910714285714290.401822-1.4710.145220.07261
M70.4089285714285720.4018221.01770.3118950.155948
M80.6589285714285730.4018221.63990.1049630.052481
M90.5089285714285720.4018221.26660.2089910.104495
M100.3105730427764330.4196630.74010.4614340.230717
M11-0.03599677158999130.433352-0.08310.9340070.467003


Multiple Linear Regression - Regression Statistics
Multiple R0.507267902262373
R-squared0.257320724665668
Adjusted R-squared0.145918833365518
F-TEST (value)2.30984161635434
F-TEST (DF numerator)12
F-TEST (DF denominator)80
p-value0.0137721805425719
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.776394260228902
Sum Squared Residuals48.2230437853107


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
18.79.00000000000002-0.300000000000019
28.58.9-0.399999999999999
38.28.725-0.524999999999999
48.38.271751412429380.028248587570621
588.1625-0.1625
68.18.2375-0.137499999999999
78.79.2375-0.537500000000001
89.39.4875-0.187499999999997
98.99.3375-0.4375
108.89.13914447134786-0.339144471347862
118.48.79257465698144-0.392574656981437
128.48.82857142857143-0.428571428571428
137.39-1.70000000000000
147.28.9-1.7
1578.725-1.725
1678.27175141242938-1.27175141242938
176.98.1625-1.2625
186.98.2375-1.3375
197.19.2375-2.1375
207.59.4875-1.9875
217.49.3375-1.9375
228.99.13914447134786-0.239144471347861
238.38.9185633575464-0.618563357546409
248.38.82857142857143-0.528571428571428
25992.49106291150269e-15
268.98.91.52655665885959e-16
278.88.7250.0750000000000004
287.88.27175141242938-0.471751412429379
297.88.1625-0.3625
307.88.2375-0.4375
319.29.2375-0.0375000000000007
329.39.4875-0.1875
339.29.3375-0.137500000000001
348.69.13914447134786-0.539144471347861
358.58.79257465698144-0.292574656981437
368.58.82857142857143-0.328571428571428
37992.49106291150269e-15
3898.90.0999999999999998
398.88.7250.0750000000000004
4088.27175141242938-0.271751412429379
417.98.1625-0.262500000000000
428.18.2375-0.137500000000000
439.39.23750.0625000000000007
449.49.4875-0.0875000000000004
459.49.33750.0625000000000001
469.39.265133171912830.0348668280871676
4798.792574656981440.207425343018563
489.18.828571428571430.271428571428572
499.790.700000000000002
509.78.90.799999999999999
519.68.7250.875
528.38.271751412429380.0282485875706221
538.28.16250.0374999999999993
548.48.23750.162500000000000
5510.69.23751.3625
5610.99.48751.4125
5710.99.33751.5625
589.69.139144471347860.460855528652139
599.38.792574656981440.507425343018564
609.38.828571428571430.471428571428573
619.690.600000000000002
629.58.90.6
639.58.7250.775
6498.271751412429380.728248587570621
658.98.16250.7375
6698.23750.7625
6710.19.23750.8625
6810.29.48750.712499999999999
6910.29.33750.8625
709.59.139144471347860.360855528652139
719.38.792574656981440.507425343018564
729.38.828571428571430.471428571428573
739.490.400000000000003
749.38.90.400000000000000
759.18.7250.374999999999999
7698.271751412429380.728248587570621
778.98.16250.7375
7898.23750.7625
799.89.23750.562500000000001
80109.48750.512500000000000
819.89.33750.4625
829.49.139144471347860.260855528652139
8398.91856335754640.0814366424535907
848.98.828571428571430.0714285714285721
859.390.300000000000003
869.18.90.199999999999999
878.88.7250.0750000000000004
888.98.397740112994350.50225988700565
898.78.16250.537499999999999
908.68.23750.362499999999999
919.19.2375-0.137500000000000
929.39.4875-0.1875
938.99.3375-0.4375
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/1b3v81195136071.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/1b3v81195136071.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/2ixp91195136071.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/2ixp91195136071.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/3h1t91195136071.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/3h1t91195136071.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/44iwb1195136071.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/44iwb1195136071.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/5dlwx1195136071.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/5dlwx1195136071.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/649lx1195136071.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/649lx1195136071.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/7yv4t1195136071.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/7yv4t1195136071.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/83hfy1195136072.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/83hfy1195136072.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/9rumc1195136072.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135995p82g5u78j8h7hp1/9rumc1195136072.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by