Home » date » 2007 » Nov » 15 » attachments

WS 8 - Q3 Tot vrouwen

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 06:59:21 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v.htm/, Retrieved Thu, 15 Nov 2007 15:05:16 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
8.7 0 8.5 0 8.2 0 8.3 0 8 0 8.1 0 8.7 0 9.3 0 8.9 0 8.8 0 8.4 0 8.4 0 7.3 0 7.2 0 7 0 7 0 6.9 0 6.9 0 7.1 0 7.5 0 7.4 0 8.9 0 8.3 1 8.3 0 9 0 8.9 0 8.8 0 7.8 0 7.8 0 7.8 0 9.2 0 9.3 0 9.2 0 8.6 0 8.5 0 8.5 0 9 0 9 0 8.8 0 8 0 7.9 0 8.1 0 9.3 0 9.4 0 9.4 0 9.3 1 9 0 9.1 0 9.7 0 9.7 0 9.6 0 8.3 0 8.2 0 8.4 0 10.6 0 10.9 0 10.9 0 9.6 0 9.3 0 9.3 0 9.6 0 9.5 0 9.5 0 9 0 8.9 0 9 0 10.1 0 10.2 0 10.2 0 9.5 0 9.3 0 9.3 0 9.4 0 9.3 0 9.1 0 9 0 8.9 0 9 0 9.8 0 10 0 9.8 0 9.4 0 9 1 8.9 0 9.3 0 9.1 0 8.8 0 8.9 1 8.7 0 8.6 0 9.1 0 9.3 0 8.9 0
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Vrouw[t] = + 8.01790922619047 -0.162552083333333x[t] + 0.25587255084325M1[t] + 0.138983754960317M2[t] -0.0529050409226189M3[t] -0.48697482638889M4[t] -0.649182632688493M5[t] -0.59107142857143M6[t] + 0.392039775545634M7[t] + 0.625150979662699M8[t] + 0.458262183779762M9[t] + 0.385570746527778M10[t] + 0.063332248263889M11[t] + 0.0168887958829365t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)8.017909226190470.25784231.096200
x-0.1625520833333330.346189-0.46950.6399720.319986
M10.255872550843250.3165440.80830.4213270.210663
M20.1389837549603170.3164630.43920.6617310.330865
M3-0.05290504092261890.3164-0.16720.8676330.433816
M4-0.486974826388890.319377-1.52480.1313110.065656
M5-0.6491826326884930.316328-2.05220.0434580.021729
M6-0.591071428571430.316319-1.86860.0653860.032693
M70.3920397755456340.3163281.23930.2188860.109443
M80.6251509796626990.3163551.97610.0516340.025817
M90.4582621837797620.31641.44840.1514730.075736
M100.3855707465277780.3305331.16650.2469170.123459
M110.0633322482638890.3414280.18550.8533180.426659
t0.01688879588293650.0023867.077700


Multiple Linear Regression - Regression Statistics
Multiple R0.738589178461846
R-squared0.545513974540945
Adjusted R-squared0.470725134908442
F-TEST (value)7.29405586744613
F-TEST (DF numerator)13
F-TEST (DF denominator)79
p-value3.84266307662529e-09
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.611185973035292
Sum Squared Residuals29.5103151971726


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
18.78.290670572916690.409329427083314
28.58.190670572916670.309329427083333
38.28.015670572916660.184329427083335
48.37.598489583333330.701510416666666
587.453170572916670.546829427083333
68.17.528170572916660.571829427083335
78.78.528170572916670.171829427083333
89.38.778170572916660.521829427083337
98.98.628170572916670.271829427083334
108.88.572367931547620.227632068452381
118.48.267018229166670.132981770833334
128.48.220574776785720.179425223214285
137.38.4933361235119-1.1933361235119
147.28.3933361235119-1.19333612351191
1578.2183361235119-1.21833612351190
1677.80115513392857-0.80115513392857
176.97.6558361235119-0.755836123511903
186.97.7308361235119-0.830836123511904
197.18.7308361235119-1.63083612351190
207.58.9808361235119-1.48083612351190
217.48.8308361235119-1.43083612351190
228.98.775033482142860.124966517857144
238.38.30713169642857-0.0071316964285707
248.38.42324032738095-0.123240327380952
2598.696001674107140.30399832589286
268.98.596001674107140.303998325892858
278.88.421001674107140.378998325892858
287.88.00382068452381-0.203820684523809
297.87.85850167410714-0.0585016741071427
307.87.93350167410714-0.133501674107143
319.28.933501674107140.266498325892857
329.39.183501674107140.116498325892857
339.29.033501674107140.166498325892856
348.68.9776990327381-0.377699032738096
358.58.67234933035714-0.172349330357143
368.58.62590587797619-0.125905877976191
3798.898667224702380.101332775297622
3898.798667224702380.201332775297619
398.88.623667224702380.176332775297620
4088.20648623511905-0.206486235119047
417.98.06116722470238-0.161167224702380
428.18.13616722470238-0.0361672247023817
439.39.136167224702380.16383277529762
449.49.386167224702380.0138327752976187
459.49.236167224702380.163832775297619
469.39.01781250.282187500000001
4798.875014880952380.124985119047619
489.18.828571428571430.271428571428571
499.79.101332775297620.598667224702383
509.79.001332775297620.69866722470238
519.68.826332775297620.77366722470238
528.38.40915178571429-0.109151785714285
538.28.26383277529762-0.0638327752976198
548.48.338832775297620.0611672247023809
5510.69.338832775297621.26116722470238
5610.99.588832775297621.31116722470238
5710.99.438832775297621.46116722470238
589.69.383030133928570.216969866071428
599.39.077680431547620.222319568452381
609.39.031236979166670.268763020833333
619.69.303998325892850.296001674107145
629.59.203998325892860.296001674107143
639.59.028998325892860.471001674107142
6498.611817336309520.388182663690476
658.98.466498325892860.433501674107143
6698.541498325892860.458501674107142
6710.19.541498325892860.558501674107143
6810.29.791498325892860.408501674107142
6910.29.641498325892860.558501674107142
709.59.58569568452381-0.0856956845238098
719.39.280345982142860.0196540178571431
729.39.23390252976190.0660974702380949
739.49.5066638764881-0.106663876488092
749.39.4066638764881-0.106663876488095
759.19.2316638764881-0.131663876488096
7698.814482886904760.185517113095237
778.98.66916387648810.230836123511905
7898.74416387648810.255836123511904
799.89.74416387648810.0558361235119051
80109.99416387648810.00583612351190393
819.89.8441638764881-0.0441638764880953
829.49.78836123511905-0.388361235119048
8399.32045944940476-0.320459449404763
848.99.43656808035714-0.536568080357144
859.39.70932942708333-0.40932942708333
869.19.60932942708333-0.509329427083334
878.89.43432942708333-0.634329427083334
888.98.854596354166670.0454036458333332
898.78.87182942708333-0.171829427083335
908.68.94682942708334-0.346829427083335
919.19.94682942708333-0.846829427083334
929.310.1968294270833-0.896829427083334
938.910.0468294270833-1.14682942708333
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/1k2hj1195135156.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/1k2hj1195135156.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/20wfe1195135156.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/20wfe1195135156.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/3u9vl1195135156.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/3u9vl1195135156.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/4lkn21195135156.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/4lkn21195135156.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/541cm1195135156.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/541cm1195135156.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/6dago1195135156.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/6dago1195135156.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/7i4461195135157.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/7i4461195135157.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/8nka61195135157.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/8nka61195135157.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/9t8ky1195135157.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135505ivewigctv8xjw9v/9t8ky1195135157.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by