Home » date » 2007 » Nov » 15 » attachments

WS 8 - Q3 Vrouwen 2

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 06:59:00 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw.htm/, Retrieved Thu, 15 Nov 2007 14:57:26 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
8,7 0 8,5 0 8,2 0 8,3 0 8 0 8,1 0 8,7 0 9,3 0 8,9 0 8,8 0 8,4 0 8,4 0 7,3 0 7,2 0 7 0 7 0 6,9 0 6,9 0 7,1 0 7,5 0 7,4 0 8,9 0 8,3 1 8,3 0 9 0 8,9 0 8,8 0 7,8 0 7,8 0 7,8 0 9,2 0 9,3 0 9,2 0 8,6 0 8,5 0 8,5 0 9 0 9 0 8,8 0 8 0 7,9 0 8,1 0 9,3 0 9,4 0 9,4 0 9,3 1 9 0 9,1 0 9,7 0 9,7 0 9,6 0 8,3 0 8,2 0 8,4 0 10,6 0 10,9 0 10,9 0 9,6 0 9,3 0 9,3 0 9,6 0 9,5 0 9,5 0 9 0 8,9 0 9 0 10,1 0 10,2 0 10,2 0 9,5 0 9,3 0 9,3 0 9,4 0 9,3 0 9,1 0 9 0 8,9 0 9 0 9,8 0 10 0 9,8 0 9,4 0 9 1 8,9 0 9,3 0 9,1 0 8,8 0 8,9 1 8,7 0 8,6 0 9,1 0 9,3 0 8,9 0
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
Vrouw[t] = + 8.84494382022472 + 0.0300561797752813x[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)8.844943820224720.08953698.786100
x0.03005617977528130.4317290.06960.944650.472325


Multiple Linear Regression - Regression Statistics
Multiple R0.00729777799105412
R-squared5.32575636067139e-05
Adjusted R-squared-0.0109351681774525
F-TEST (value)0.00484669641145338
F-TEST (DF numerator)1
F-TEST (DF denominator)91
p-value0.944650292755398
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation0.84468424895323
Sum Squared Residuals64.9277247191011


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
18.78.84494382022474-0.144943820224740
28.58.84494382022472-0.344943820224718
38.28.84494382022472-0.64494382022472
48.38.84494382022472-0.544943820224718
588.84494382022472-0.844943820224719
68.18.84494382022472-0.744943820224719
78.78.84494382022472-0.144943820224720
89.38.844943820224720.455056179775282
98.98.844943820224720.0550561797752814
108.88.84494382022472-0.0449438202247182
118.48.84494382022472-0.444943820224719
128.48.84494382022472-0.444943820224719
137.38.84494382022472-1.54494382022472
147.28.84494382022472-1.64494382022472
1578.84494382022472-1.84494382022472
1678.84494382022472-1.84494382022472
176.98.84494382022472-1.94494382022472
186.98.84494382022472-1.94494382022472
197.18.84494382022472-1.74494382022472
207.58.84494382022472-1.34494382022472
217.48.84494382022472-1.44494382022472
228.98.844943820224720.0550561797752814
238.38.875-0.575
248.38.84494382022472-0.544943820224718
2598.844943820224720.155056179775281
268.98.844943820224720.0550561797752814
278.88.84494382022472-0.0449438202247182
287.88.84494382022472-1.04494382022472
297.88.84494382022472-1.04494382022472
307.88.84494382022472-1.04494382022472
319.28.844943820224720.355056179775280
329.38.844943820224720.455056179775282
339.28.844943820224720.355056179775280
348.68.84494382022472-0.244943820224719
358.58.84494382022472-0.344943820224719
368.58.84494382022472-0.344943820224719
3798.844943820224720.155056179775281
3898.844943820224720.155056179775281
398.88.84494382022472-0.0449438202247182
4088.84494382022472-0.844943820224719
417.98.84494382022472-0.944943820224719
428.18.84494382022472-0.744943820224719
439.38.844943820224720.455056179775282
449.48.844943820224720.555056179775281
459.48.844943820224720.555056179775281
469.38.8750.425
4798.844943820224720.155056179775281
489.18.844943820224720.255056179775281
499.78.844943820224720.85505617977528
509.78.844943820224720.85505617977528
519.68.844943820224720.755056179775281
528.38.84494382022472-0.544943820224718
538.28.84494382022472-0.64494382022472
548.48.84494382022472-0.444943820224719
5510.68.844943820224721.75505617977528
5610.98.844943820224722.05505617977528
5710.98.844943820224722.05505617977528
589.68.844943820224720.755056179775281
599.38.844943820224720.455056179775282
609.38.844943820224720.455056179775282
619.68.844943820224720.755056179775281
629.58.844943820224720.655056179775281
639.58.844943820224720.655056179775281
6498.844943820224720.155056179775281
658.98.844943820224720.0550561797752814
6698.844943820224720.155056179775281
6710.18.844943820224721.25505617977528
6810.28.844943820224721.35505617977528
6910.28.844943820224721.35505617977528
709.58.844943820224720.655056179775281
719.38.844943820224720.455056179775282
729.38.844943820224720.455056179775282
739.48.844943820224720.555056179775281
749.38.844943820224720.455056179775282
759.18.844943820224720.255056179775281
7698.844943820224720.155056179775281
778.98.844943820224720.0550561797752814
7898.844943820224720.155056179775281
799.88.844943820224720.955056179775282
80108.844943820224721.15505617977528
819.88.844943820224720.955056179775282
829.48.844943820224720.555056179775281
8398.8750.124999999999999
848.98.844943820224720.0550561797752814
859.38.844943820224720.455056179775282
869.18.844943820224720.255056179775281
878.88.84494382022472-0.0449438202247182
888.98.8750.0249999999999996
898.78.84494382022472-0.144943820224720
908.68.84494382022472-0.244943820224719
919.18.844943820224720.255056179775281
929.38.844943820224720.455056179775282
938.98.844943820224720.0550561797752814
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/1olgn1195135135.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/1olgn1195135135.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/2wbtj1195135135.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/2wbtj1195135135.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/3vi6b1195135135.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/3vi6b1195135135.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/4vs561195135135.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/4vs561195135135.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/5eu4s1195135135.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/5eu4s1195135135.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/6lljt1195135135.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/6lljt1195135135.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/7ps9b1195135135.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/7ps9b1195135135.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/8rbil1195135135.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/8rbil1195135135.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/9xdoz1195135136.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195135032x9w5bfv67c425jw/9xdoz1195135136.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by