Home » date » 2007 » Nov » 15 » attachments

-25 tov economische situatie met seisoen en zonder trend

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 06:06:06 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3.htm/, Retrieved Thu, 15 Nov 2007 14:01:09 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
140 -1 132 -2 117 -2 114 -1 113 1 110 1 107 1 103 1 98 1 98 1 137 0 148 -1 147 -1 139 -1 130 -1 128 -1 127 -2 123 -2 118 -2 114 -1 108 -1 111 -1 151 -1 159 -1 158 -1 148 -1 138 0 137 0 136 1 133 1 126 1 120 1 114 -1 116 1 153 -1 162 1 161 0 149 -1 139 -1 135 -1 130 -1 127 -1 122 1 117 -1 112 -2 113 -2 149 -2 157 -1 157 -2 147 -1 137 -1 132 -1 125 -1 123 -1 117 -1 114 -1 111 -1 112 -1 144 0 150 -1 149 -1 134 1 123 1 116 -1 117 -1 111 0 105 -1 102 1 95 1 93 1 124 0 130 -1 124 -1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
<25[t] = + 150.040609137056 -1.43908629441624eco[t] -3.47969543147209M1[t] -9.739847715736M2[t] -20.3333333333333M3[t] -24.2398477157360M4[t] -26.0934856175973M5[t] -29.3536379018613M6[t] -34.4471235194585M7[t] -38.3739424703892M8[t] -44.4268189509306M9[t] -43.1137901861252M10[t] -8M11[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)150.0406091370563.96228837.867200
eco-1.439086294416241.174101-1.22570.2251040.112552
M1-3.479695431472095.307729-0.65560.5145940.257297
M2-9.7398477157365.496581-1.7720.0814750.040737
M3-20.33333333333335.493097-3.70160.0004680.000234
M4-24.23984771573605.496581-4.414.4e-052.2e-05
M5-26.09348561759735.496581-4.74721.3e-057e-06
M6-29.35363790186135.507021-5.33022e-061e-06
M7-34.44712351945855.524377-6.235500
M8-38.37394247038925.548584-6.91600
M9-44.42681895093065.496581-8.082600
M10-43.11379018612525.524377-7.804300
M11-85.493097-1.45640.1505030.075251


Multiple Linear Regression - Regression Statistics
Multiple R0.869606485316494
R-squared0.756215439304505
Adjusted R-squared0.707458527165406
F-TEST (value)15.509912464249
F-TEST (DF numerator)12
F-TEST (DF denominator)60
p-value3.44169137633799e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9.51432225516791
Sum Squared Residuals5431.339678511


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1140148.000000000000-8.00000000000028
2132143.178934010152-11.1789340101523
3117132.585448392555-15.5854483925550
4114127.239847715736-13.2398477157361
5113122.508037225042-9.50803722504226
6110119.247884940778-9.24788494077836
7107114.154399323181-7.15439932318104
8103110.227580372250-7.22758037225039
998104.174703891709-6.17470389170896
1098105.487732656514-7.48773265651439
11137142.040609137056-5.04060913705584
12148151.479695431472-3.47969543147208
13147148-0.99999999999996
14139141.739847715736-2.73984771573605
15130131.146362098139-1.14636209813874
16128127.2398477157360.760152284263968
17127126.8252961082910.174703891708963
18123123.565143824027-0.565143824027069
19118118.471658206430-0.471658206429764
20114113.1057529610830.894247038917088
21108107.0528764805410.947123519458542
22111108.3659052453472.63409475465314
23151143.4796954314727.52030456852792
24159151.4796954314727.52030456852793
2515814810.0000000000000
26148141.7398477157366.26015228426396
27138129.7072758037228.2927241962775
28137125.80076142132011.1992385786802
29136122.50803722504213.4919627749577
30133119.24788494077813.7521150592217
31126114.15439932318111.8456006768189
32120110.2275803722509.77241962774957
33114107.0528764805416.94712351945854
34116105.48773265651410.5122673434856
35153143.4796954314729.52030456852792
36162148.60152284264013.3984771573604
37161146.56091370558414.4390862944163
38149141.7398477157367.26015228426396
39139131.1463620981397.85363790186126
40135127.2398477157367.76015228426397
41130125.3862098138754.61379018612521
42127122.1260575296114.87394247038918
43122114.1543993231817.84560067681895
44117113.1057529610833.89424703891709
45112108.4919627749583.50803722504232
46113109.8049915397633.19500846023689
47149144.9187817258884.08121827411169
48157151.4796954314725.52030456852794
49157149.4390862944167.5609137055838
50147141.7398477157365.26015228426396
51137131.1463620981395.85363790186126
52132127.2398477157364.76015228426397
53125125.386209813875-0.386209813874792
54123122.1260575296110.873942470389178
55117117.032571912014-0.0325719120135387
56114113.1057529610830.894247038917088
57111107.0528764805413.94712351945854
58112108.3659052453473.63409475465314
59144142.0406091370561.95939086294416
60150151.479695431472-1.47969543147207
611491481.00000000000005
62134138.861675126904-4.86167512690357
63123128.268189509306-5.26818950930626
64116127.239847715736-11.2398477157360
65117125.386209813875-8.3862098138748
66111120.686971235195-9.68697123519459
67105117.032571912014-12.0325719120135
68102110.227580372250-8.22758037225043
6995104.174703891709-9.17470389170897
7093105.487732656514-12.4877326565144
71124142.040609137056-18.0406091370558
72130151.479695431472-21.4796954314721
73124148-24.0000000000000
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/1x2cx1195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/1x2cx1195131961.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/21plw1195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/21plw1195131961.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/3ae7h1195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/3ae7h1195131961.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/4mlpn1195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/4mlpn1195131961.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/5n24g1195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/5n24g1195131961.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/6c8kz1195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/6c8kz1195131961.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/70qua1195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/70qua1195131961.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/831oc1195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/831oc1195131961.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/914z51195131961.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t11951316583fqla84frjxuph3/914z51195131961.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by