Home » date » 2007 » Nov » 15 » attachments

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 04:15:52 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1.htm/, Retrieved Thu, 15 Nov 2007 12:11:48 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
128 0 123 0 118 0 112 0 105 0 102 0 131 0 149 0 145 0 132 0 122 0 119 0 116 0 111 0 104 0 100 0 93 0 91 0 119 0 139 0 134 0 124 0 113 0 109 0 109 0 106 0 101 0 98 0 93 0 91 0 122 0 139 0 140 1 132 1 117 1 114 1 113 1 110 1 107 1 103 1 98 1 98 1 137 1 148 1 147 1 139 1 130 1 128 1 127 1 123 1 118 1 114 1 108 1 111 1 151 1 159 1 158 1 148 1 138 1 137 1 136 1 133 1 126 1 120 1 114 1 116 1 153 1 162 1 161 1 149 0 139 0 135 0 130 0 127 0 122 0 117 0 112 0 113 0 149 0 157 0 157 0 147 0 137 0 132 0 125 0 123 0 117 0 114 0 111 0 112 0 144 0 150 0 149 0 134 0 123 0 116 0 117 0 111 0 105 0 102 0 95 0 93 0 124 0 130 0 124 0 115 0
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
y[t] = + 116.117805975632 + 7.3629767954448x[t] -0.658850251479013M1[t] -4.52683317233233M2[t] -10.0614827598522M3[t] -14.3739101251499M4[t] -20.1307819348921M5[t] -20.4432093001898M6[t] + 13.1332522234014M7[t] + 24.4874915247703M8[t] + 21.5791778488676M9[t] + 11.7515256830638M10[t] + 3.71520514307549M11[t] + 0.0902051430754819t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)116.1178059756323.74252331.026600
x7.36297679544481.9012933.87260.0002010.000101
M1-0.6588502514790134.517819-0.14580.8843720.442186
M2-4.526833172332334.51691-1.00220.3188770.159439
M3-10.06148275985224.516196-2.22790.0283270.014164
M4-14.37391012514994.515676-3.18310.0019880.000994
M5-20.13078193489214.515352-4.45832.3e-051.2e-05
M6-20.44320930018984.515222-4.52761.8e-059e-06
M713.13325222340144.5152872.90860.0045510.002275
M824.48749152477034.5155465.422900
M921.57917784886764.5174964.77687e-063e-06
M1011.75152568306384.516652.60180.0108070.005403
M113.715205143075494.6455040.79970.425920.21296
t0.09020514307548190.0296623.04110.003070.001535


Multiple Linear Regression - Regression Statistics
Multiple R0.873672379650808
R-squared0.763303426964705
Adjusted R-squared0.729857172079283
F-TEST (value)22.8217906482976
F-TEST (DF numerator)13
F-TEST (DF denominator)92
p-value0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation9.29081927231896
Sum Squared Residuals7941.37769308219


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1128115.54916086722812.4508391327719
2123111.77138308945111.2286169105492
3118106.32693864500611.6730613549937
4112102.1047164227849.89528357721588
510596.43804975611768.56195024388245
610296.21582753389535.78417246610473
7131129.8824942005621.11750579943800
8149141.3269386450067.67306135499358
9145138.5088301121796.4911698878208
10132128.7713830894513.22861691054921
11122120.8252676925381.17473230746208
12119117.2002676925381.79973230746203
13116116.631622584134-0.63162258413444
14111112.853844806357-1.85384480635658
15104107.409400361912-3.40940036191217
16100103.18717813969-3.18717813968995
179397.5205114730233-4.52051147302327
189197.298289250801-6.29828925080105
19119130.964955917468-11.9649559174677
20139142.409400361912-3.40940036191216
21134139.591291829085-5.59129182908495
22124129.853844806357-5.85384480635661
23113121.907729409444-8.90772940944374
24109118.282729409444-9.28272940944374
25109117.714084301040-8.71408430104023
26106113.936306523262-7.9363065232624
27101108.491862078818-7.49186207881795
2898104.269639856596-6.26963985659573
299398.602973189929-5.60297318992905
309198.3807509677068-7.38075096770683
31122132.047417634373-10.0474176343735
32139143.491862078818-4.49186207881794
33140148.036730341436-8.03673034143554
34132138.299283318707-6.29928331870719
35117130.353167921794-13.3531679217943
36114126.728167921794-12.7281679217943
37113126.159522813391-13.1595228133908
38110122.381745035613-12.3817450356130
39107116.937300591169-9.93730059116854
40103112.715078368946-9.7150783689463
4198107.048411702280-9.04841170227963
4298106.826189480057-8.82618948005742
43137140.492856146724-3.49285614672407
44148151.937300591169-3.93730059116852
45147149.119192058341-2.11919205834133
46139139.381745035613-0.381745035612973
47130131.4356296387-1.43562963870012
48128127.81062963870.189370361299889
49127127.241984530297-0.241984530296595
50123123.464206752519-0.464206752518757
51118118.019762308074-0.0197623080743188
52114113.7975400858520.202459914147909
53108108.130873419185-0.130873419185412
54111107.9086511969633.0913488030368
55151141.575317863639.42468213637015
56159153.0197623080745.9802376919257
57158150.2016537752477.79834622475289
58148140.4642067525197.53579324748124
59138132.5180913556065.4819086443941
60137128.8930913556068.1069086443941
61136128.3244462472027.67555375279762
62133124.5466684694258.45333153057546
63126119.102224024986.8977759750199
64120114.8800018027585.11999819724213
65114109.2133351360914.7866648639088
66116108.9911129138697.00888708613102
67153142.65777958053610.3422204194644
68162154.102224024987.89777597501991
69161151.2841154921539.7158845078471
70149134.18369167398014.8163083260203
71139126.23757627706712.7624237229331
72135122.61257627706712.3874237229331
73130122.0439311686637.95606883133664
74127118.2661533908868.73384660911448
75122112.8217089464419.17829105355892
76117108.5994867242198.40051327578114
77112102.9328200575529.06717994244783
78113102.7105978353310.2894021646700
79149136.37726450199712.6227354980034
80157147.8217089464419.17829105355893
81157145.00360041361411.9963995863861
82147135.26615339088611.7338466091145
83137127.3200379939739.67996200602733
84132123.6950379939738.30496200602734
85125123.1263928855691.87360711443086
86123119.3486151077913.65138489220869
87117113.9041706633473.09582933665313
88114109.6819484411254.31805155887535
89111104.0152817744586.98471822554204
90112103.7930595522368.20694044776425
91144137.4597262189026.54027378109759
92150148.9041706633471.09582933665314
93149146.0860621305202.91393786948034
94134136.348615107791-2.34861510779131
95123128.402499710878-5.40249971087845
96116124.777499710878-8.77749971087844
97117124.208854602475-7.20885460247493
98111120.431076824697-9.43107682469709
99105114.986632380253-9.98663238025265
100102110.764410158030-8.76441015803043
10195105.097743491364-10.0977434913637
10293104.875521269142-11.8755212691415
103124138.542187935808-14.5421879358082
104130149.986632380253-19.9866323802526
105124147.168523847425-23.1685238474254
106115137.431076824697-22.4310768246971
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/14xyy1195125347.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/14xyy1195125347.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/28z051195125347.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/28z051195125347.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/31v821195125347.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/31v821195125347.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/4y96g1195125347.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/4y96g1195125347.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/5qnt11195125347.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/5qnt11195125347.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/6fvid1195125347.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/6fvid1195125347.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/7euh91195125348.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/7euh91195125348.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/8smtk1195125348.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/8smtk1195125348.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/9zbkf1195125348.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195125097wxv5tq3eiddn2t1/9zbkf1195125348.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by