Home » date » 2007 » Nov » 15 » attachments

R Software Module: rwasp_multipleregression.wasp (opens new window with default values)
Title produced by software: Multiple Regression
Date of computation: Thu, 15 Nov 2007 03:55:11 -0700
 
Cite this page as follows:
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL http://www.freestatistics.org/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p.htm/, Retrieved Thu, 15 Nov 2007 11:54:35 +0100
 
User-defined keywords:
 
Dataseries X:
» Textbox « » Textfile « » CSV «
513 0 503 0 471 0 471 0 476 0 475 0 470 0 461 0 455 0 456 0 517 0 525 0 523 1 519 1 509 1 512 1 519 1 517 1 510 1 509 1 501 1 507 1 569 1 580 1 578 1 565 1 547 1 555 1 562 1 561 1 555 1 544 1 537 1 543 1 594 1 611 1 613 1 611 1 594 1 595 1 591 1 589 1 584 1 573 1 567 1 569 1 621 1 629 1 628 1 612 1 595 1 597 1 593 1 590 1 580 1 574 1 573 1 573 1 620 1 626 1 620 1 588 1 566 1 557 1 561 1 549 1 532 1 526 1 511 1 499 1 555 1 565 1 542 1
 
Text written by user:
 
Output produced by software:

Enter (or paste) a matrix (table) containing all data (time) series. Every column represents a different variable and must be delimited by a space or Tab. Every row represents a period in time (or category) and must be delimited by hard returns. The easiest way to enter data is to copy and paste a block of spreadsheet cells. Please, do not use commas or spaces to seperate groups of digits!


Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135


Multiple Linear Regression - Estimated Regression Equation
werk[t] = + 513.214322916667 + 58.9089843749999actbel[t] -13.6611436631941M1[t] -16.5647166418651M2[t] -36.5415783110118M3[t] -36.3517733134921M4[t] -34.4953016493056M5[t] -38.638829985119M6[t] -47.6156916542659M7[t] -55.5925533234127M8[t] -63.4027483258928M9[t] -63.5462766617063M10[t] -9.35647166418653M11[t] + 0.643528335813491t + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)513.21432291666714.15746336.250400
actbel58.908984374999911.914534.94437e-063e-06
M1-13.661143663194116.02044-0.85270.3972560.198628
M2-16.564716641865116.708256-0.99140.3255350.162767
M3-36.541578311011816.682756-2.19040.0324610.01623
M4-36.351773313492116.659907-2.1820.0331050.016552
M5-34.495301649305616.63972-2.07310.0425420.021271
M6-38.63882998511916.622205-2.32450.0235590.011779
M7-47.615691654265916.60737-2.86710.0057350.002867
M8-55.592553323412716.595223-3.34990.0014140.000707
M9-63.402748325892816.585769-3.82270.000320.00016
M10-63.546276661706316.579012-3.83290.000310.000155
M11-9.3564716641865316.574957-0.56450.5745580.287279
t0.6435283358134910.2116943.03990.0035250.001763


Multiple Linear Regression - Regression Statistics
Multiple R0.828565341301244
R-squared0.686520524805647
Adjusted R-squared0.61744877603401
F-TEST (value)9.93923763354248
F-TEST (DF numerator)13
F-TEST (DF denominator)59
p-value1.40640277201953e-10
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation28.7063265493221
Sum Squared Residuals48619.1378534227


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
1513500.19670758928412.8032924107156
2503497.9366629464295.0633370535714
3471478.603329613096-7.60332961309554
4471479.436662946429-8.43666294642857
5476481.936662946429-5.9366629464289
6475478.436662946429-3.43666294642865
7470470.103329613095-0.103329613095266
8461462.769996279762-1.76999627976213
9455455.603329613095-0.603329613095288
10456456.103329613095-0.103329613095402
11517510.9366629464296.06333705357132
12525520.9366629464294.06333705357131
13523566.828031994048-43.8280319940479
14519564.56798735119-45.5679873511904
15509545.234654017857-36.2346540178571
16512546.06798735119-34.0679873511905
17519548.56798735119-29.5679873511904
18517545.06798735119-28.0679873511905
19510536.734654017857-26.7346540178572
20509529.401320684524-20.4013206845238
21501522.234654017857-21.2346540178571
22507522.734654017857-15.7346540178571
23569577.56798735119-8.56798735119046
24580587.56798735119-7.56798735119044
25578574.550372023813.44962797619026
26565572.290327380952-7.2903273809524
27547552.956994047619-5.95699404761901
28555553.7903273809521.20967261904762
29562556.2903273809525.70967261904767
30561552.7903273809528.20967261904763
31555544.45699404761910.5430059523810
32544537.1236607142866.87633928571433
33537529.9569940476197.04300595238096
34543530.45699404761912.543005952381
35594585.2903273809528.70967261904764
36611595.29032738095215.7096726190477
37613582.27271205357230.7272879464284
38611580.01266741071430.9873325892857
39594560.67933407738133.3206659226191
40595561.51266741071433.4873325892857
41591564.01266741071426.9873325892858
42589560.51266741071428.4873325892857
43584552.17933407738131.8206659226190
44573544.84600074404828.1539992559524
45567537.67933407738129.3206659226190
46569538.17933407738130.8206659226191
47621593.01266741071427.9873325892857
48629603.01266741071425.9873325892858
49628589.99505208333438.0049479166665
50612587.73500744047624.2649925595238
51595568.40167410714326.5983258928572
52597569.23500744047627.7649925595238
53593571.73500744047621.2649925595239
54590568.23500744047621.7649925595238
55580559.90167410714320.0983258928572
56574552.5683407738121.4316592261905
57573545.40167410714327.5983258928571
58573545.90167410714327.0983258928572
59620600.73500744047619.2649925595238
60626610.73500744047615.2649925595239
61620597.71739211309522.2826078869046
62588595.457347470238-7.4573474702381
63566576.124014136905-10.1240141369047
64557576.957347470238-19.9573474702381
65561579.457347470238-18.4573474702380
66549575.957347470238-26.9573474702381
67532567.624014136905-35.6240141369047
68526560.290680803571-34.2906808035714
69511553.124014136905-42.1240141369047
70499553.624014136905-54.6240141369047
71555608.457347470238-53.457347470238
72565618.457347470238-53.457347470238
73542605.439732142857-63.4397321428573
 
Charts produced by software:
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/1zasd1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/1zasd1195124106.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/2lx7g1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/2lx7g1195124106.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/3rhys1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/3rhys1195124106.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/4xu9s1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/4xu9s1195124106.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/5bmic1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/5bmic1195124106.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/69rwb1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/69rwb1195124106.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/7zgnt1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/7zgnt1195124106.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/8sgxj1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/8sgxj1195124106.ps (open in new window)


http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/9p8bf1195124106.png (open in new window)
http://127.0.0.1/wessadotnet/public_html/freestatisticsdotorg/blog/date/2007/Nov/15/t1195124065g72zbsg9x19qf8p/9p8bf1195124106.ps (open in new window)


 
Parameters:
par1 = 1 ; par2 = Include Monthly Dummies ; par3 = Linear Trend ;
 
R code (references can be found in the software module):
library(lattice)
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('http://www.xycoon.com/ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT<br />H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation<br />Forecast', 1, TRUE)
a<-table.element(a, 'Residuals<br />Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
 





Copyright

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Software written by Ed van Stee & Patrick Wessa


Disclaimer

Information provided on this web site is provided "AS IS" without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and noninfringement. We use reasonable efforts to include accurate and timely information and periodically update the information, and software without notice. However, we make no warranties or representations as to the accuracy or completeness of such information (or software), and we assume no liability or responsibility for errors or omissions in the content of this web site, or any software bugs in online applications. Your use of this web site is AT YOUR OWN RISK. Under no circumstances and under no legal theory shall we be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, this web site.


Privacy Policy

We may request personal information to be submitted to our servers in order to be able to:

We NEVER allow other companies to directly offer registered users information about their products and services. Banner references and hyperlinks of third parties NEVER contain any personal data of the visitor.

We do NOT sell, nor transmit by any means, personal information, nor statistical data series uploaded by you to third parties.

We carefully protect your data from loss, misuse, alteration, and destruction. However, at any time, and under any circumstance you are solely responsible for managing your passwords, and keeping them secret.

We store a unique ANONYMOUS USER ID in the form of a small 'Cookie' on your computer. This allows us to track your progress when using this website which is necessary to create state-dependent features. The cookie is used for NO OTHER PURPOSE. At any time you may opt to disallow cookies from this website - this will not affect other features of this website.

We examine cookies that are used by third-parties (banner and online ads) very closely: abuse from third-parties automatically results in termination of the advertising contract without refund. We have very good reason to believe that the cookies that are produced by third parties (banner ads) do NOT cause any privacy or security risk.

FreeStatistics.org is safe. There is no need to download any software to use the applications and services contained in this website. Hence, your system's security is not compromised by their use, and your personal data - other than data you submit in the account application form, and the user-agent information that is transmitted by your browser - is never transmitted to our servers.

As a general rule, we do not log on-line behavior of individuals (other than normal logging of webserver 'hits'). However, in cases of abuse, hacking, unauthorized access, Denial of Service attacks, illegal copying, hotlinking, non-compliance with international webstandards (such as robots.txt), or any other harmful behavior, our system engineers are empowered to log, track, identify, publish, and ban misbehaving individuals - even if this leads to ban entire blocks of IP addresses, or disclosing user's identity.


FreeStatistics.org is powered by